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ON THE CONDITION cTA~lb + r> 0,

IN THE LURIE PROBLEM

ALFREDO S. SOMOLINOS

ABSTRACT.      The problem of Lurie consists in finding NASC's for

all solutions of the system \x   = Ax + bf(cr), a = c   x — rf(cr)\  to tend to

zero as   t -> oo  under appropriate conditions on the functions involved.

When f(a)/cr< M,   for all   <x and a certain M,  we obtain  NASC's for the

system to be absolutely stable.   When  f(o)/a<  D as   | o\ -» oo, we obtain

conditions for ultimate uniform boundedness of the solutions of the

system.

1.   Introduction.   We consider a system of real ordinary differential

equations

(1) x' = Ax + bfia),        a' = cTx - rfia)

where x, b, c ate 72-vectors, a and r > 0 are scalars, j(a) is a continuous

real function such that afio) > 0 if a 4 0 and A is an 72 x 72 constant matrix

with characteristic values which have negative real parts.

The Lurie problem consists in finding NASC's for (1) to be absolutely

stable; that is for (1) to be asymtotically stable in the large for any  fia)

which satisfies the above conditions.

LaSalle [l] proved that if r > iBb + c/2)TC~ liBb + c/2),  then (1) is

absolutely stable.   Here,  B  is the unique, symmetric, positive definite

solution of the matrix equation  A   B + BA = - C,   and   C is a given symmetric

positive definite matrix (see Lefschetz [4, p. 133]).  He proved also that the

above condition implies

(*) cTA-lb + r>0,

and that all solutions are bounded.

Halanay [8, pp.  149, 158] proved that  (*)  is a necessary condition for

-
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absolute stability, and that, in the case where   b  is an eigenvector of A

or  c an eigenvector of A   ,  then (*)  is a NASC for absolute stability.

Burton [5] proved that for f(a)/a -» 0 as  \a\ -* oo, then  c   A~lb + r> 0

is a NASC for uniform ultimate boundedness of the solutions of (1).

One would like to know if (*)  implies uniform, ultimate boundedness or

absolute stability for some class of functions  fia).

In the first theorem we prove that if  lim sup ficr)/a < M  as   |a| -» oo  for

a certain  M,  then (*) implies ultimate uniform boundedness of the solutions

T    — 1
of (1), and  c   A     b + r < 0 implies the existence of unbounded solutions.

We do this by means of a single Liapunov function, thereby greatly simpli-

fying the proof in [5] as well as strengthening the result.

As a corollary we find that  (*)  is a NASC for absolute stability for

the class of functions which satisfy fia)/a < M  for all a and a certain  M.

This is equivalent to giving the sector of absolute stability in the sense of

Aizermann [6, p. 10].

One then wishes to discover whether or not (*)   implies absolute

stability for any fia) such that a fia) > 0.   To this end one may note that

the work of Lefschetz [2, p. 8] may be used to show that  (*)  implies abso-

lute stability for 72 = 1.

For the 72-dimensional case we observe that (*) would be positive in

two cases:

(a) if  r> |cTA_1è|,  or

(b) cTA-lb > 0.

We prove that (1) is absolutely stable for a condition related to (a) in

the corollary to Theorem II, and we give a counterexample to show that  (*)

does not  imply absolute stability for (b).

2.   We give here our results on boundedness.

Theorem I.   Let (1) be as above.   Let lim sup fia)/a < M as \a\ -> 00

where M = i\Bb\ |cTA" *| - c7Tß(A- 1)Tc)_ l. // cT A~ lb + r> 0, then the

solutions of (1) are uniformly ultimately bounded; if c A~ b + r < 0, then

there are unbounded solutions.

Corollary I.    // fia)/a < M for all a.   then (*)  is a NASC for absolute

stability of (1). '

Corollary II.   (*) is also a necessary condition for absolute stability

when we enlarge the class of allowed functions to all the fia) such that

afia) > 0, a 4 0.
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Corollary III.   // the vectors Bb and (A~ )   c are parallel and opposite ii.e., if

iBb)TiA~l)Tc = - \Bb\ |(A-1)Tc|),   and if i*) holds, then (I) is absolutely

stable for all fia)  such that a fia) > 0, a 4 0.

Proof.   Consider the function

V = xTBx + aicTA~lx - a)2/2

with  a> 0,  and A   S + BA =-/.   V is positive definite and radially un-

bounded  (i.e.,   Vix, a) -» oo  as   \ix, a)\ -» oo).   Let us calculate the derivative

along the solutions of (1).   We have

V' = ixT'Bx + xTBx') + aicTA ~1x- a)icTA-lx' - a')

= ixTAT + bTfia))Bx + xTBiAx + bfia))

+ aicTA -1x- a)[cTA ~ \Ax + bfia)) - cTx + rfia)]

= xTiATB + BA)x + ibTBx + xTBb)fia)

+ aicTA-lx-a)icTA-h + r)fia).

Calling  k = cTA~ lb + r > 0,   and since  bTBx = xTBb and  cTA~lx =

xTiA~ l)Tc, we get

V' = -xTx + xT2Bbfia) + akxTiA~l)Tc - akafia)

= -xTx + xTi2Bb + akiA~ l)Tc)fia) - akafia).

If we call   2d = 2Bb + a^(A~   )   c,   and then complete the square we obtain

V' = -XTX + 2xTdfia) - akafia)

= -(* - 6fia))Tix - 6fia)) + \6\2fia)2 - akafia)

= -ix - dfia))Tix - Qfia)) + \fia)\i\6\ 2\fia)\ - ak\a\).

V '   would be negative definite if   |0|2 |/(ff)| - a.^|cr| < 0,  or equivalently

if fia)/a <M = ak/\6\2.

From the hypothesis there exists a ct0 such that  |<j| > aQ implies

f(a)/a < M.   So for  |a| > aQ and all x, V    is negative definite.

We now consider the region  |ct| < aQ.   The continuous function  |/(cr)|

would reach a maximum  N for   |o"| < a .

We can then write

V' = -XTx + xT26f(a) - akafia)

<-U|2+ |x||20||/(ff)| - akafia) <-|xf(|x| - |26>|N) - akafia),
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and   V' is negative definite for   |x| > \2d\N.

In this way, for  |x| + |ff| > \2d\N + aQ = R,  we have   V'  negative definite,

and that implies uniform ultimate boundedness (see Yoshizawa [7, pp. 38, 42]).

We prove now the second part of the theorem: if  c   A~ Xb + r < 0  ik < 0)

then there are unbounded solutions.

Let

U = -xTBx + aicTA~lx - a)2/2,

where the letters have the same meaning as in  V.

The derivative along the solution is

U' = xTx - ixT2Bb - akcTA-1x)fia) - akafia)

= xTx - xTi2Bb + a\k\iA~ Yc)fia) + a\k\afia).

We call, as before,  2d = 2Bb + a\k\iA~  )   c,  and we can write   U' = x   x -

2xTdfia) + a\k\afia).

Observe that   U   = - V  .   Hence, since   V   is negative definite outside

a certain sphere of radius   R,   (7    is positive definite outside the same sphere.

We claim that this implies the existence of unbounded solutions.   To

see this,   let  (7.    be the maximum value of  (7 in the closed sphere of radius

R = 2N\6\ + aQ.   Pick a point  (0, aQ) such that  (7(0, oA = CQ > UQ.    U' is

positive on the locus   Uix, a) = CQ;  hence, the solution starting at the point

(O, a A  cannot get into the closed sphere   S R.

Let  R. > R  be an arbitrary number.   The solution  [xit, 0, a A, ait, 0, a A]

would leave the sphere  SD   .   For, if we assume not, then the derivative   U
1

would reach a minimum  o > 0  in the compact set  SR    - SR.   If we integrate

along the solution we get

Uixit), ait)) > (7(0, aQ) + J' Sdt= UiO, aQ) + dt,

and so  (7 -» oo on 5D     which is a contradiction.
1

Proof of Corollary I.   If fia)/a < M for all a, then (*) implies  V

negative definite, and that implies absolute stability, so the condition is

sufficient.

To see that it is necessary, we observe that if  c   A     b + r = 0,   then the

origin is not the only critical point (see Lefschetz [2, p. 19]) and the
T     — 1 i •   ■

system cannot be absolutely stable.   If  c   A      b + r < 0,  then   (7    is positive

definite and we apply Liapunov's theorem on instability (see LaSalle-

Lefschetz [3, p. 38]).
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Proof of Corollary II.    The system is absolutely stable if for all fia)

such that afia) > 0,  a 4 0,  the zero solution is asymptotically stable in the

large.   A subclass of these functions is the class of functions such that

fia)/a < M  for all  a.   If for this subclass there are unbounded solutions,

then the system cannot be absolutely stable, since for some of the allowed

functions, there are solutions which do not tend to zero.

Proof of Corollary III.   From Corollary I we know that if fia)/a < M,

then  (*)  implies absolute stability.   If we can make   ¡VI = oo,  then the sector

of stability becomes the entire first quadrant, and any  fia),   such that

afia) > 0,   satisfies the condition.

If bTBiA~l)Tc = -\Bb\\cTA~l\,  then M = oo,  and that proves the

corollary.

We determine now the optimum values of a and  M.   We have

2d = 2Bb +  akiA~ l)T c and M = ak/\d\2.   We want to pick a so as to

maximize the value of  ¡M = 4a&/|20|   .

Calling  y = ak,  we calculate first the value of  |2Ö|   .

|2Ö|2 = i2Bb + yiA-l)Tc)Ti2Bb + yiA~l)Tc)

= |2Sè|2 + yÜA-1)Tc)T2Bb + yi2Bb)TiA-l)Tc + y2\ÍA~l)Tc\2

|2Bè|2+ 2¿7T2B(A-1)Tcy+ \iA~l

= ky    + 2py + v,

where  A = |(A~ 1)Tc| 2, p = bT2BÍA~ 1)Tc,  and v = \2Bb\2.   We can write

¡M = 4y/(Ay2 + 2py + v).   Then from ¡Vi' =0 we get Ay2 + 2py + v - y(2Ay + 2p)

= 0 or - Ay 2 + v = 0,  and since   a> 0 and  k > 0,  we choose^ y = +(¡VA)'2 =

|2Bè|/|(A_1)Tc|.   We get

M = 4i\2Bb\/\cTA-1\)/[\cTA- Y\2Bb\ 2/\cTA~ !| 2

+ 2èTB(A-1)Tc(|2Bè|/|cTA-1|) + |2B¿>|2]

= 4|2B¿|/(|2B¿7|2|cTA-1| + 2¿r2B(A-1)rc|2Be| + |2B*| 2|cTA" x|)

= 4|2Bè|/(2|2Bè|2|cTA-1| + 2c7T2B(A" 1)Tc|2B,7|)

= 4/(2|2Bè||cTA_1| + 2èT2B(A-1)Tc)

= (|B¿||cTA-1| +bTBÍA-Vc)-1

which is the maximum value.
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3.   We know already that  c   A~   b + r > 0 is a necessary condition

for absolute stability, and a sufficient condition for a certain class of func-

tions  fia).   We would like to know if this is true in general.

As indicated in the introduction,   c   A"   b + r can be larger than zero

if r> \cTA-1b\  or  cTA'lb > 0.

In the next theorem we find that for  r> \c\ |2B¿>|,  the system is abso-

lutely stable.   In case the matrix  A  is symmetric, we have   2B = -A~   , and

this condition becomes  r > \c\ \A~   b\ which implies r > \c   A~  b\.

Theorem II.   Let (1) be as above, A   B + BA = -1,  and let (*) hold.

If, in addition,   rir - 2c1Bb) > \c\ 2 \Bb\ 2 - icTBb)2,   then the system is

absolutely stable.

Corollary I.   // (*)  holds and r> \c\ \2Bb\,   then (1) is absolutely stable.

Corollary II.    // (*)   holds and the vectors  Bb  and c are parallel and

opposite (i.e., c   Bb - — \c\ |Bè|),   then the system is absolutely stable.

Proof.   Let

V = xTBx + a fa fia) ds,       a > 0.

The function V is positive definite.   The derivative along the solutions of

(l)is

V' = -xTx + 2iBb + ac/2)Txfia) - arfia)2.

The condition for  V' to be negative definite is  ar - iBb + ac/2)

rliBb + ac/2) > 0 (see Lefschetz [2, p. 132]),  or iBb + ac/2)TÍBb+ ac/2)

- ar < 0, which can be written as

(2) |Bc7|2 + (Bè)r(ac/2) + (ac/2)TBè + (a|c|/2)2 - ar < 0,

and this in turn as

a2(|c|/2)2 + icTBb - r)a + \Bb\2 < 0.

We try to find an  a to satisy this condition.   Consider the equation

a2(|c|/2)2 + (crB¿>-r)a+ |ße|2 = 0.

If it had two real positive roots  a  , a  , we could pick an a, a   < a< a

and for this choice   V   would be negative definite.

The conditions for this equation to have two positive real roots are

(1) cTBb - r < 0 or  r> cTBb,   and

(2) the   discriminant   has   to   be   positive.   That   is   (c   Bb — r)     —
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4(|c|/2)2|Bè|2 > 0, which is true iff

(cTBe)2-2rcTBe + r2-|B¿|2|c|2>0

~  r2-2rcTBfe> |Bè|2|c|2-(cTBè)2

<=,  rir- 2cTBb) > \Bb\ 2\c\ 2 - icTBb)2.

Since  \Bb\ \c\ > c   Bb,   condition (2) implies condition (1).   Also, since

V is positive definite,   V' is negative definite and (*)  holds, it follows

that all solutions are bounded and the system is absolutely stable (see

LaSalle [l]).

Proof of the  corollaries.   Note that the second term,   |c|    \Bb\    -

(c   Bb)  , depends on the orientation of the vectors  Bb and  c.   Several cases

may occur:

(a) c   Bb = |c| \Bb\.   The vectors are parallel and in the same direction.

The condition becomes then

r(r-2|c||Be|)>|c|2|B¿7|2-|c|2|B¿>|2 = 0

or  r > |c| |2Bfc|.

(b) c   Bb = 0.   The vectors are perpendicular.   The condition becomes

rir-0)> \c\2\Bb\2-0,

or  r2 > |c|2 \Bb\2  from which  r > \c\ \Bb\.

(c) c   Bb = - \c\ \Bb\.   The vectors are parallel and opposite.   Substi-

tuting in the condition, we get

rir+ |c||2Bfc|)> |c|2|Bfe|2-(-|c||Bè|)2= 0,

and so since   r + \c\ \2Bb\ > 0 is always true,   (*)  is enough to secure

absolute stability.

Observe in the expression of  V' that in this case, since  Bb and  c

are parallel and opposite, we can always find an  a> 0  such that the

middle term Bb + ac/2 = 0.

That proves Corollary II.

To prove Corollary I, we observe that condition (2) is also true if

|B2>|2 + |Bè||ac/2| + |ac/2||Sè| + (a|c|/2)2 - ar < 0

or

a2|c|2/4+ a(|Bfe||c| - r) + |Bè|2 < 0.

Using the same argument as in the theorem to make this expression
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r)2

negative definite, we arrive at the two following conditions:

(1) \Bb\ \c\ - r < 0 or  r > \Bb\ \c\,  and

(2) the discriminant has to be positive, that is  i\Bb\ \c\ - r)

4\c\ 2/4 \Bb\ 2 > 0, which gives us  r > \2Bb\ \c\,  and this proves Corollary I.

Remark.   In order to compare r > \c\ \2Bb\  with LaSalle's result r >

iBb + c/2)   C~  iBb + c/2),  we are going to take   C = I and use a one-dimen-

sional system.

For the one-dimensional system, the condition  (*)  is enough to secure

absolute stability and is stronger than the other two.   Nevertheless we use

the one-dimensional case as an illustration to visualize in the parameter

space the regions of convergence for the different conditions.

Consider the system

x' = -ax + bfia),       a = ex — rfia).

Where all the letters are scalars,   a> 0, r> 0,  A = -a, A~    = -a~ X,

2B = a~ l.   The condition   r > iBb + c/2)TiBb + c/2)  becomes   r>ib/2a + c/2)2--

ib/a+ c)2/4, while r> \c\ \2Bb\ becomes  r> \c\ \b/a\,  and r+ cTA~lb> 0

becomes r > cib/a).

Figure 1

If we plot in the parameter space b/a and c foi a fixed r,  then:

The first condition is represented by the region between the two lines  b/a + c =

±2\Jr ; the second by the region between the four branches of the two hyper-

bolae   |(¿/fl)||c| = r; the third by the region between the two branches of the

simple hyperbola  ib/a)c = r    (see Figure 1).
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4.   We give a counterexample to show that in the case   c   A     b > 0,  the

condition  (*) does not guarantee absolute stability.

Let

x' = -x + a,       y   = -O.Oly -a,       a  = lOx + y - a.

In this case  fia) = a,   cT = (10, 1), bT = (1, - 1), r = 1 > 0.

^-1 0
-1 0

0    -0.01
A'

■1        0

0    -100

We check first   cTA    lb + r > 0.

(10,1) )+ 1 = (10,1) f
1/ WOO

1        0

0    -100

The characteristic equation   \hl - Q\ = 0,

h + 1 0

0

•10

h + 0.01

-1

1

0    -0.01    -1

10        1        -1

+ 1 =-10 + 100+ 1 = 91 > 0.

-1

1     = 0

h+ 1

(h + l)L(h + 0.0l)(h + 1) + 1] - lOh - 0.1 = 0,

(h + l)lb2 + l.Olh + 1.01] - I0h - 0.1 = 0,

hl + 2.0lh2 + 2.0277 - 10h + 0.91 = 0,

hl + 2.01A2 - 7.9877 + 0.91 = 0.

This equation has a positive root between 1.9 and 2.
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Added in proof.   Let  c   Bb = |c||Bf?|cos 6.   We can substitute the condi-

tion in Theorem II by the condition  r > |B¿7||c| + c   Bb = \c\\Bb\il + cos 0),

which emphasizes the role of the angle  6, between the vector Bb and  c.

(Suggestion of K. Langenhop (Carbondale).)
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