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HARDY SPACE EXPECTATION OPERATORS

AND REDUCING SUBSPACES

JOSEPH A. BALL

ABSTRACT.    In this paper we study the range of the isometry on H

arising from an inner function which is zero at zero by composition.  The

range of such an isometry is characterized as a closed subspace   %   of

H    (weak-    closed for p = oo)   satisfying the following: (i)   the constant

function   1   is in   \ ; (ii)   if / e %   and  g £ /7°° D 11, then fg e )R; (iii)  if

/ e JB   has inner-outer factorization /= X • F, then   X    is in  % ; (iv)   if

¡ß   :  a f 8 I   is a collection of inner functions in %, then the greatest common

divisor of \Ba: a e 8 S   is also in Î1Î ; and (v)   if f e H , B  e S , where  B

is inner and   B  • f e H   , then B   • f e %.   The proof makes use of the fact

that there exists a projection onto such a subspace satisfying the axioms

of an expectation operator, which for p = 2, is simply the orthogonal pro-

jection.  This characterization is applied to give an equivalent formula-

tion of a conjecture of Nordgren concerning reducing subspaces of analy-

tic Toeplitz operators.

1.  Introduction.  Let Lp  be the space of Lebesgue measurable functions

on the circle whose pth power is integrable, and let Hp be those elements

of Lp whose negative Fourier coefficients vanish.  For <j!> an inner function

with (¡){o) = 0, define the operator  C,   on  Lp   by

(D C^.f(e^)^f(cb(ei0)).

This operator, studied by Nordgren [7] and Ryff [ 10] among others, has  Hp

as an invariant subspace, and under our assumptions on dj, is an isometry.

Our main result is a characterization of the range of C,   considered as an

operator on Hp, 1 < p < oo.   See Hoffman [ 5] or Sz.-Nagy-Foias [12] for

relevant definitions.  The notation g.c.d. means greatest common divisor.

Theorem 1.  A closed (p = oo, weak-    closed) subspace 311 of H^  is the

range of an operator C,   for some inner <p"   with dAo) = 0   if and only if

(i)   1 £ M, m contains a nonconstant function;

(ii)   if f £ 3Ti   and g £H°° n% then fg £ %,
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(iii)   if f em has inner-outer factorization f=y • F, then y £ m and

F £%

(iv)   if {B  I a £ u¡   is a collection of inner functions in m, then  B =

g.c.d.  \B   \ is in 3li;

(v)   if f elm", B e%, where  B   is inner and Bf £ Hp, then B   ■ f £%.

2.  Expectation operators associated with  cb.  Let S be the smallest

o -algebra of Lebesgue measurable sets with respect to which  çS  is measur-

able.  Given any / in Lp', by the Radon-Nikodym theorem there exists a

unique  íB-measurable function (P ,/)   suchthat j" Bf dm = f AP ,/) dm for all

B £ %.  The function (P,/)   is the Radon-Nikodym derivative of / with re-

spect to  %.  The operator  P ,   is the conditional expectation operator of

probability theory and has the following properties [6]:

(2) P^(l) = 1;

(3) P^/-P0(g)) = (P^XP0g);

(4) I|Pj/IL < ll/IL» tnat is, P ,   is a contraction operator on Lp;

(5) Pi   is a projection, P , = P , ;

(6) /(P/   • g dm = ifiP^dm for / £ Lp, g £ L«,  ï/p + l/q = 1;

(7) the range of  P ,   is  Lp(iB) , the set of functions in Lp   measurable

with respect to  m, where  P ,   is considered as an operator on  Lp.

We state the following Lemma adapted from Rota [9] without proof.

Lemma 1. Let Ü be the collection of all functions of the form p(cb, <f>),

p a complex polynomial in two variables. Then, for 1 < p < oo, Lp(%) is the

closure in Lp  of u, and L°°(iB)   is the weak-    closure in  L°°  of Ct.

We now use the special assumptions on  d>.  Since d) is inner,  çb7<p   =

cj     \ and a polynomial  p(qj, $)   in cA and  cf> has the form S"=_   c .cbK  Us-

ing this we can obtain

Lemma 2.   P •   leaves  Hp   invariant,  1 < p < oo.

Proof.  Consider first  p = 2.  Since  d> is inner with çS(o) = 0, \(ß': j an

integer!  is an orthonormal set in  L2.   By Lemma  1, this orthonormal set

spans  L2($) s ran P ,.   By (5)  and (6), P.   is the orthogonal projection onto

L 2(3$) .   By the form   of the spanning orthonormal set, PH2Prh = ^¡¿^H 2>

and the assertion follows for p = 2.

Suppose / £ Hp,  1 < p < oo.   Then by (6) , for all g £ i7~, ¡(P^gdm =

ff(P^g)dm.   Since g £ H~ C H2, (P^g)   £ f/2 nL°° = /7~, where the last

integral vanishes since / £ Hp.  Hence  P ,/ £ rV^.
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Lemma 3.   P,   is a projection of Lp  onto  C ,(LP) , and of Hp  onto

Proof. For 1 < p < oo, use Lemma 1, the fact that cA;çS = <ßk~', and

that C , is an isometry. For p = oo, also use the characterization of se-

quential weak-    convergence as bounded point-wise convergence.

Notation.   For convenience of notation, let us set

Lp(4>) = P^L*)  (= C^L*1))    and    Hp(ab) = P^(Hp) (= C¿H*)).

The shift operator S:Hp — Hp  defined by  S:f(e'6) -, ei6f(elB)   is an

isometry on Hp; the closed (for p = oo, weak-    closed)  invariant subspaces

of S have been characterized (for p = 2, Beurling [ l], for arbitrary p,

Srinivasan and Wang [ ll])  as of the form  B  • Hp, where  B  is inner (i.e. ,

unimodular almost everywhere).  If p = 2  and  XI is such an invariant sub-

space with the property that not all  / £ XÍ have /(0) = 0, a nonzero constant

multiple of the associated inner function B  is obtained as the orthogonal

projection of the constant function   1 onto  Jl (Hoffman [ 5, P- 100]). We

use this fact in the proof of the next lemma.

Lemma 4.  Let  K  be a collection of functions in Hp(<b), and let the

smallest closed {for p = oo, weak-    closed) invariant subspace of S con-

taining  K be equal to  B  • Hp, where  B  is the associated inner function.

Then B £ Hp(cp).

Proof.   First consider the case  p = 2.  Without loss of generality, we

can assume that not all elements of  K vanish at the origin.  Otherwise,

let j be the largest integer such that  K C d)1  ' H2(<b).  Then  K' = rf>'K C

H 2(çS)   and not all elements of  K'  vanish at the origin.  If the invariant

subspace of S generated by K'  is  B'  'H     where  B'  is inner and in H (<f>),

then the invariant subspace generated by  K  is simply B   ' H    , where  B =

cp'B'  is in H2(<ß).

Hence, assume not all elements of  K  vanish at the origin, and let  Tí

be the invariant subspace of S generated by  K.  Note that finite sums of

elements of the form / ■ k, where / £ r/°°   and  k e K, form a dense subset

of Jl.  Under our assumption, c  • B, c  some complex number, 0 < \c\ < 1,

is the orthogonal projection of the constant function   1  onto  XL  Hence, by

elementary Hubert space results,

í N )

||1 - c . B\\\ = inf  ||1 - g||2: g = Z  f&. ii * "°°. ki e 4
( 2 = 1 J
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and if \gn\ is any minimizing sequence, g     converges to c -ß  in  H2.

Note that, for /   £ H°°, k. £ K, using properties (2)-(4)  of P ,.

- Z pé«i = 1-p

= p

Hence, if {£ .",/•     "*•
l=Vl„ 2

C H (ip)  is also minimizing, B = lim

is a minimizing sequence, ¿=1

1   "P
n^>oo     ¡= 1 '      * rt

is in H2(d>).

For £ ^ 2, p < oo, / in  Hp  having inner-outer factorization f = \ ' F,

note that /-./' = x • Fp'2 maps   Hp  onto  H2  with  ||/||£ = ||/'||2, and an

invariant subspace closed in  Hp  norm is mapped onto an invariant sub-

space closed in H    norm.   For p = oo,  simply use that the closure of B • H°°

in H  -norm is  B   ■

case p = 2.

In this way the general situation is reduced to the

3- Proof of Theorem 1. We first show necessity in Theorem 1, that

is the subspace Hp(cp) for <p an inner function with <^>(o) = 0, satisfies

conditions (i) — (v) in the statement of Theorem 1. (i) and (ii) are clear.

For (v) , note that in / £ Hp(cp), B is inner and in Hp(<p) such that Bf £

Hp, then / = P^f) = P^B -Bf) = B ■ P^Bf), showing that P^Bf) = Bf.

For (iii) and (iv) apply Lemma 4 with K = \f\ and K = {B Ja £ Q\, respec-

tively.

Conversely, assume a subspace  M C Hp   satisfies (i) — (v) .  Assume

first that p = 2.  Set <p = g.c.d.  iß: B   inner, B(Ö) = 0, B £ Jül.  By (i)  and

(iii) , the indicated set is nonvacuous, and by (iv) , tp em.  Let f £m.  We

show / £H2(cp).  If /=/(0) (a constant), then / £ W2(r/>).. Otherwise

/ - /(0)   has inner part y in M by (ii) and y(0) = 0.  By definition of <p,

0(/ _ /(0))   £ Í72, whence by (v) , c/>(/ - /(o))  £ 3li, or / - f(0)   £ <p  '%.  A

similar inductive argument shows that / - 2?       ( /, cpJ ) cß7 £ ipn + 1%

((• , * ) denotes the inner product for  f/2) .  Hence

oo

7=0

(the infinite series an W2-limit)   is an element of  (~) ¿Lq^ ™-  Since the

associated Toeplitz operator  T,   is completely nonunitary,  (|^=0<£  ^ ~

(0). Hence /= P ,(/)   £fi2(c5), and Uli C H2(rA). Since <pj e% for /= 0, 1,

2, • • •, and 51! is closed, %, = H2(tf>).
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If   1 < p < oo, f e Hp  has inner-outer factorization f = X ' P< tnen the

map /—>/' = y ■ Fp'     maps a closed subspace of Hp  satisfying (i) — (v)

onto a closed subspace of H     satisfying (i) —(v) .  For the case  p = oo,

note H°" C H , so one can conclude as in the case p = 2 that / = P ,(/)

for / £ JTC, whence JR C H°°(ip). -Since  )I¡  is weak-   closed and contains cp1

for ;>0, 5lU/r(¿).

4.  Analytic Toeplitz operators.   For  F  an element of H°°, the associ-

ated analytic Toeplitz operator  T     is defined by

(TFf)(ei9) = F(eia)f(e*e)    for f £ H2.

These operators have been much studied and many of their properties are

well known (Brown and Halmos [ 2]).

If b is an inner function which is not a linear fractional transformation,

T,   is a shift operator of multiplicity greater than 1, hence   T,   has nontriv-

ial reducing subspaces [ 4].  Hence if  F  is a function of such an inner func-

tion  b, any subspace reducing for  T,   is also reducing for  T p, whence  T p

has nontrivial reducing subspaces.  Nordgren [ 8] has conjectured that this

is the only time  Tp  has nontrivial reducing subspaces.  The main result of

this section is

Theorem 2.   The following are equivalent:

(I)   TheToeplitz operator Tp  has a nontrivial reducing subspace if and

only if F  is a function of an inner function which is not a linear fractional

transformation.

(II)  (i)   // F £ H00  has inner-outer factorization  F= yG and "ni C H

reduces  Tp, then % reduces  T      and T   .

(ii)   // \B    — a e (a\  is a collection of inner functions, JSi C H    re-

duces T„    for all   a £ (3, then 3H reduces B = g.c.d.  \B   = a £ Q\.
0 a a

For F £ H°°, set  UF = \f £ H°°: fot any  31Î reducing  Tp, % reduces  T,\.

Then uP  is a subalgebra of H°°, and since weak-    convergence in rV°°   cor-

responds to weak convergence of analytic Toeplitz operators, ÛF  is weak-

closed.

Lemma 5.   For <p  an inner function, <p(0) = 0, U , = H°°(cl>).

Proof.  Since  /V°°(çS)   is the weak-    closure of polynomials in  cb and

weak-    convergence in H     corresponds to weak-operator convergence for

the associated Toeplitz operators, one has  rV°°(ç5) C U ,.  Conversely, if

T, £ Öj,, since  H (cp)  is a reducing subspace for  T,   and   1  £/V°°(çS), / =

7^1)   £ H°°(cS), hence  S    C W°°(çS).
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Lemma 6.  (I)   is equivalent to

(III)   ¡or any  F e H°°, there exists an inner function cp with  tp(0) = 0

such that Qp = H°°(<p).

Proof.  Assume (III) , and suppose  Up = H°°(cp)  and  T _,  has a nontrivial

reducing subspace. Since cp e u„, T ,   has a nontrivial reducing subspace,

whence cp is not a linear-fractional transformation.  Since   F £ H°°(cp), F is

a function of cp.

Conversely, for  F £ H°°, let Uli be the intersection of all subspaces of

the type  H'x'(cp), cp   inner with  cp(6) = 0, containing  F.   Then, by Theorem 1,

% = H°°(b), where  b is inner, b(0) = 0, and   F = Cfe(G) = G(b)  foe some

G £ f/°°. By the construction it follows that  G is not a function of a non-

trivial inner function.  Hence by (I), TG  has no nontrivial reducing subspaces,

so the W    algebra generated by  T'     is all bounded operators on H .  In

particular if S: f(el ) —> e    f(e l°)   is the standard shift on  H2, there exists

a sequence of polynomials  P (TG, Tr)   in  TG and  T_  converging weakly

to S; since TG = G(S),

*

72—»OO

S = w-*Um P(G(sf,G(S)).

Since  T,, a completely nonunitary isometry, is unitarily equivalent to a

direct sum of copies of S,

Tb = w-*ümPn(G(Tb)*,G(Tb)),    or

Tb-u,-*limPn{T*p,TF),

so T,   belongs to the   W  -algebra generated by  Tp.   Hence  T,   has at least

the reducing subspaces  of  Tp.   Since  F = f(b), T,   cannot have any more,

hence  U„ = Ct, = H00(b), by Lemma 5.

Proof of Theorem 2.  Combine Lemma 6 with Theorem 1.

5.  Concluding remarks.  In a related study [3], J- A. Deddens and Tin

Kin Wong have made some progress on formulation (II) of the Nordgren con-

jecture for some special cases.

In a recent preprint, Entire Toeplitz operators, I. N. Baker, J. A. Deddens

and J. L. Ullman answer the conjecture in the affirmative if tp is an entire

function.
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