HARDY SPACE EXPECTATION OPERATORS AND REDUCING SUBSPACES

IOSEPH A. BALL

ABSTRACT. In this paper we study the range of the isometry on H^D arising from an inner function which is zero at zero by composition. The range of such an isometry is characterized as a closed subspace \mathbb{N} of H^D (weak-* closed for $p=\infty$) satisfying the following: (i) the constant function 1 is in \mathbb{N} ; (ii) if $f \in \mathbb{N}$ and $g \in H^\infty \cap \mathbb{N}$, then $fg \in \mathbb{N}$; (iii) if $f \in \mathbb{N}$ has inner-outer factorization $f = \mathbf{x} \cdot F$, then $fg \in \mathbb{N}$; (iv) if $f \in \mathbb{N}$ has collection of inner functions in \mathbb{N} , then the greatest common divisor of $fg \in \mathbb{N}$ is a collection of inner functions in \mathbb{N} , then the greatest common divisor of $fg \in \mathbb{N}$ is also in \mathbb{N} ; and (v) if $f \in \mathbb{N}$, $fg \in \mathbb{N}$, where $fg \in \mathbb{N}$ is inner and $fg \in \mathbb{N}$, then $fg \in \mathbb{N}$. The proof makes use of the fact that there exists a projection onto such a subspace satisfying the axioms of an expectation operator, which for $fg \in \mathbb{N}$ is simply the orthogonal projection. This characterization is applied to give an equivalent formulation of a conjecture of Nordgren concerning reducing subspaces of analytic Toeplitz operators.

1. Introduction. Let L^p be the space of Lebesgue measurable functions on the circle whose pth power is integrable, and let H^p be those elements of L^p whose negative Fourier coefficients vanish. For ϕ an inner function with $\phi(0) = 0$, define the operator C_{ϕ} on L^p by

(1)
$$C_{\phi}: f(e^{i\theta}) \to f(\phi(e^{i\theta})).$$

This operator, studied by Nordgren [7] and Ryff [10] among others, has H^p as an invariant subspace, and under our assumptions on ϕ , is an isometry. Our main result is a characterization of the range of C_{ϕ} considered as an operator on H^p , $1 \le p \le \infty$. See Hoffman [5] or Sz.-Nagy-Foiaş [12] for relevant definitions. The notation g.c.d. means greatest common divisor.

Theorem 1. A closed $(p = \infty, weak^* closed)$ subspace \mathbb{M} of H^p is the range of an operator C_{ϕ} for some inner ϕ with $\phi(0) = 0$ if and only if

- (i) $1 \in M$, M contains a nonconstant function;
- (ii) if $f \in \mathbb{M}$ and $g \in H^{\infty} \cap \mathbb{M}$, then $fg \in \mathbb{M}$;

Received by the editors November 26, 1973.

AMS (MOS) subject classifications (1970). Primary 47B35, 46J15.

Copyright © 1975, American Mathematical Society

- (iii) if $f \in \mathbb{M}$ has inner-outer factorization $f = \chi \cdot F$, then $\chi \in \mathbb{M}$ and $F \in \mathfrak{M};$
- (iv) if $\{B_{\alpha} | \alpha \in \mathcal{C}\}$ is a collection of inner functions in \mathcal{M} , then B =g.c.d. $\{B_{\alpha}\}$ is in \mathbb{M} ;
 - (v) if $f \in \mathbb{M}$, $B \in \mathbb{M}$, where B is inner and $\overline{B}f \in H^p$, then $\overline{B} \cdot f \in \mathbb{M}$.
- 2. Expectation operators associated with ϕ . Let $\mathcal B$ be the smallest σ -algebra of Lebesgue measurable sets with respect to which ϕ is measurable. Given any f in L^p , by the Radon-Nikodym theorem there exists a unique B-measurable function $(P_{\phi}f)$ such that $\int_B f dm = \int_B (P_{\phi}f) dm$ for all $B \in \mathcal{B}$. The function $(P_{\phi}/)$ is the Radon-Nikodym derivative of f with respect to ${\mathcal B}.$ The operator P_{ϕ} is the conditional expectation operator of probability theory and has the following properties [6]:

 - $\begin{array}{ll} (2) & P_{\phi}(1) = 1; \\ (3) & P_{\phi}(f \cdot P_{\phi}(g)) = (P_{\phi}f)(P_{\phi}g); \end{array}$
 - (4) $\|P_{\phi}f\|_{p} \leq \|f\|_{p}$, that is, P_{ϕ} is a contraction operator on L^{p} ;

 - (5) P_{ϕ} is a projection, $P_{\phi}^{2} = P_{\phi}$; (6) $\int (P_{\phi}f) \cdot g \, dm = \int f(P_{\phi}g) \, dm$ for $f \in L^{p}$, $g \in L^{q}$, 1/p + 1/q = 1;
- (7) the range of P_{ϕ} is $L^{p}(\mathfrak{B})$, the set of functions in L^{p} measurable with respect to \mathcal{B} , where P_{ϕ} is considered as an operator on L^{p} .

We state the following Lemma adapted from Rota [9] without proof.

Lemma 1. Let \mathcal{A} be the collection of all functions of the form $p(\phi, \overline{\phi})$, p a complex polynomial in two variables. Then, for $1 \le p \le \infty$, $L^p(\mathfrak{B})$ is the closure in L^p of \mathfrak{A} , and $L^{\infty}(\mathfrak{B})$ is the weak-* closure in L^{∞} of \mathfrak{A} .

We now use the special assumptions on ϕ . Since ϕ is inner, $\overline{\phi}^j \phi^k =$ ϕ^{k-j} , and a polynomial $p(\phi, \overline{\phi})$ in ϕ and $\overline{\phi}$ has the form $\sum_{i=-n}^{n} c_i \phi^i$. Using this we can obtain

Lemma 2. P_{ϕ} leaves H^p invariant, $1 \le p \le \infty$.

Proof. Consider first p = 2. Since ϕ is inner with $\phi(0) = 0$, $\{\phi^j: j \text{ an } \}$ integer is an orthonormal set in L^2 . By Lemma 1, this orthonormal set spans $L^{2}(\mathcal{B}) \equiv \operatorname{ran} P_{\phi}$. By (5) and (6), P_{ϕ} is the orthogonal projection onto $L^{2}(\mathcal{B})$. By the form of the spanning orthonormal set, $P_{H^{2}}P_{\phi} = P_{\phi}P_{H^{2}}$, and the assertion follows for p = 2.

Suppose $f \in H^p$, $1 \le p \le \infty$. Then by (6), for all $g \in H_0^{\infty}$, $\int (P_{d}f)g dm =$ $\int f(P_{\phi}g) dm$. Since $g \in H_0^{\infty} \subset H_0^2$, $(P_{\phi}g) \in H_0^2 \cap L^{\infty} = H_0^{\infty}$, where the last integral vanishes since $f \in H^p$. Hence $P_{ab} f \in H^p$.

Lemma 3. P_{ϕ} is a projection of L^p onto $C_{\phi}(L^p)$, and of H^p onto $C_{\phi}(H^p)$.

Proof. For $1 \le p < \infty$, use Lemma 1, the fact that $\overline{\phi}^j \phi^k = \phi^{k-j}$, and that C_{ϕ} is an isometry. For $p = \infty$, also use the characterization of sequential weak-* convergence as bounded point-wise convergence.

Notation. For convenience of notation, let us set

$$L^{p}(\phi) = P_{\phi}(L^{p}) \ (= C_{\phi}(L^{p}))$$
 and $H^{p}(\phi) = P_{\phi}(H^{p}) \ (= C_{\phi}(H^{p})).$

The shift operator $S:H^p \to H^p$ defined by $S:f(e^{i\theta}) \to e^{i\theta}f(e^{i\theta})$ is an isometry on H^p ; the closed (for $p=\infty$, weak-* closed) invariant subspaces of S have been characterized (for p=2, Beurling [1], for arbitrary p, Srinivasan and Wang [11]) as of the form $B \to H^p$, where B is inner (i.e., unimodular almost everywhere). If p=2 and $\mathcal R$ is such an invariant subspace with the property that not all $f\in \mathcal R$ have f(0)=0, a nonzero constant multiple of the associated inner function B is obtained as the orthogonal projection of the constant function 1 onto $\mathcal R$ (Hoffman [5, p. 100]). We use this fact in the proof of the next lemma.

Lemma 4. Let K be a collection of functions in $H^p(\phi)$, and let the smallest closed (for $p = \infty$, weak.* closed) invariant subspace of S containing K be equal to $B \cdot H^p$, where B is the associated inner function. Then $B \in H^p(\phi)$.

Proof. First consider the case p=2. Without loss of generality, we can assume that not all elements of K vanish at the origin. Otherwise, let j be the largest integer such that $K \subset \phi^j \cdot H^2(\phi)$. Then $K' = \overline{\phi}^j K \subset H^2(\phi)$ and not all elements of K' vanish at the origin. If the invariant subspace of S generated by K' is $B' \cdot H^2$ where B' is inner and in $H^2(\phi)$, then the invariant subspace generated by K is simply $B \cdot H^2$, where $B = \phi^j B'$ is in $H^2(\phi)$.

Hence, assume not all elements of K vanish at the origin, and let \Re be the invariant subspace of S generated by K. Note that finite sums of elements of the form $f \cdot k$, where $f \in H^{\infty}$ and $k \in K$, form a dense subset of \Re . Under our assumption, $c \cdot B$, c some complex number, $0 < |c| \le 1$, is the orthogonal projection of the constant function 1 onto \Re . Hence, by elementary Hilbert space results,

$$||1 - c \cdot B||_{2}^{2} = \inf \left\{ ||1 - g||_{2}^{2} : g = \sum_{i=1}^{N} f_{i} k_{i}, f_{i} \in H^{\infty}, k_{i} \in K \right\},\,$$

and if $\{g_n\}$ is any minimizing sequence, g_n converges to $c \cdot B$ in H^2 . Note that, for $f_i \in H^{\infty}$, $k_i \in K$, using properties (2)-(4) of P_{d^*} .

$$\begin{split} \left\| 1 - \sum_{i=1}^{N} P_{\phi}(f_{i}) \cdot k_{i} \right\|_{2} &= \left\| 1 - P_{\phi} \left(\sum_{i=1}^{N} f_{i} \cdot k_{i} \right) \right\|_{2} \\ &= \left\| P_{\phi} \left(1 - \sum_{i=1}^{N} f_{i} \cdot k_{i} \right) \right\|_{2} \leq \left\| 1 - \sum_{i=1}^{N} f_{i} \cdot k_{i} \right\|_{2}. \end{split}$$

Hence, if $\{\sum_{i=1}^{N_n} f_{i_n} \cdot k_{i_n}\}$ is a minimizing sequence, $\{\sum_{i=1}^{N_n} P_{\phi}(f_{i_n}) \cdot k_{i_n}\}$ $\in H^2(\phi)$ is also minimizing, $B = \lim_{n \to \infty} \sum_{i=1}^{N_n} P_{\phi}(f_{i_n}) \cdot k_{i_n}$ is in $H^2(\phi)$. For $p \neq 2$, $p < \infty$, f in H^p having inner-outer factorization $f = \chi \cdot F$,

For $p \neq 2$, $p < \infty$, f in H^p having inner-outer factorization $f = \chi \cdot F$, note that $f \rightarrow f' = \chi \cdot F^{p/2}$ maps H^p onto H^2 with $\|f\|_p^p = \|f'\|_2^2$, and an invariant subspace closed in H^p norm is mapped onto an invariant subspace closed in H^p norm. For $p = \infty$, simply use that the closure of $B \cdot H^\infty$ in H^2 -norm is $B \cdot H^2$. In this way the general situation is reduced to the case p = 2.

3. Proof of Theorem 1. We first show necessity in Theorem 1, that is the subspace $H^p(\phi)$ for ϕ an inner function with $\phi(0)=0$, satisfies conditions (i) -(v) in the statement of Theorem 1. (i) and (ii) are clear. For (v), note that in $f \in H^p(\phi)$, B is inner and in $H^p(\phi)$ such that $\overline{B}f \in H^p$, then $f = P_{\phi}(f) = P_{\phi}(B \cdot \overline{B}f) = B \cdot P_{\phi}(\overline{B}f)$, showing that $P_{\phi}(\overline{B}f) = \overline{B}f$. For (iii) and (iv) apply Lemma 4 with $K = \{f\}$ and $K = \{B_{\alpha} | \alpha \in G\}$, respectively.

Conversely, assume a subspace $\mathbb{M} \subset H^p$ satisfies (i) $-(\mathbf{v})$. Assume first that p=2. Set $\phi=g.c.d.$ {B: B inner, B(0)=0, $B\in\mathbb{M}$ }. By (i) and (iii), the indicated set is nonvacuous, and by (iv), $\phi\in\mathbb{M}$. Let $f\in\mathbb{M}$. We show $f\in H^2(\phi)$. If f=f(0) (a constant), then $f\in H^2(\phi)$. Otherwise f-f(0) has inner part χ in \mathbb{M} by (ii) and $\chi(0)=0$. By definition of ϕ , $\overline{\phi}(f-f(0))\in H^2$, whence by (v), $\overline{\phi}(f-f(0))\in\mathbb{M}$, or $f-f(0)\in\phi^*\mathbb{M}$. A similar inductive argument shows that $f-\sum_{j=0}^n \langle f,\phi^j\rangle\phi^j\in\phi^{n+1}\mathbb{M}$ ($\langle\cdot,\cdot\rangle$ denotes the inner product for H^2). Hence

$$f - P_{\phi}(f) = f - \sum_{j=0}^{\infty} \langle f, \phi^{j} \rangle \phi^{j}$$

(the infinite series an H^2 -limit) is an element of $\bigcap_{k=0}^{\infty} \phi^k \mathbb{M}$. Since the associated Toeplitz operator T_{ϕ} is completely nonunitary, $\bigcap_{k=0}^{\infty} \phi^k \mathbb{M} = (0)$. Hence $f = P_{\phi}(f) \in H^2(\phi)$, and $\mathbb{M} \subset H^2(\phi)$. Since $\phi^j \in \mathbb{M}$ for $j = 0, 1, 2, \cdots$, and \mathbb{M} is closed, $\mathbb{M} = H^2(\phi)$.

If $1 \le p < \infty$, $f \in H^p$ has inner-outer factorization $f = \chi \cdot F$, then the map $f \to f' = \chi \cdot F^{p/2}$ maps a closed subspace of H^p satisfying (i) -(v) onto a closed subspace of H^2 satisfying (i) -(v). For the case $p = \infty$, note $H^\infty \subset H^2$, so one can conclude as in the case p = 2 that $f = P_\phi(f)$ for $f \in \mathbb{M}$, whence $\mathbb{M} \subset H^\infty(\phi)$. Since \mathbb{M} is weak-* closed and contains ϕ^j for $j \ge 0$, $\mathbb{M} = H^\infty(\phi)$.

4. Analytic Toeplitz operators. For F an element of H^{∞} , the associated analytic Toeplitz operator T_F is defined by

$$(T_E f)(e^{i\theta}) = F(e^{i\theta})f(e^{i\theta})$$
 for $f \in H^2$.

These operators have been much studied and many of their properties are well known (Brown and Halmos [2]).

If b is an inner function which is not a linear fractional transformation, T_b is a shift operator of multiplicity greater than 1, hence T_b has nontrivial reducing subspaces [4]. Hence if F is a function of such an inner function b, any subspace reducing for T_b is also reducing for T_F , whence T_F has nontrivial reducing subspaces. Nordgren [8] has conjectured that this is the only time T_F has nontrivial reducing subspaces. The main result of this section is

Theorem 2. The following are equivalent:

- (I) The Toeplitz operator T_F has a nontrivial reducing subspace if and only if F is a function of an inner function which is not a linear fractional transformation.
- (II) (i) If $F \in H^{\infty}$ has inner-outer factorization $F = \chi G$ and $\mathbb{M} \subset H^2$ reduces T_F , then \mathbb{M} reduces T_{χ} and T_G .
- (ii) If $\{B_{\alpha} = \alpha \in \mathfrak{A}\}\$ is a collection of inner functions, $\mathfrak{M} \subset H^2$ reduces $T_{B_{\alpha}}$ for all $\alpha \in \mathfrak{A}$, then \mathfrak{M} reduces B = g.c.d. $\{B_{\alpha} = \alpha \in \mathfrak{A}\}.$

For $F \in H^{\infty}$, set $\mathfrak{A}_F = \{f \in H^{\infty} : \text{ for any } \mathbb{M} \text{ reducing } T_F, \mathbb{M} \text{ reduces } T_f \}$. Then \mathfrak{A}_F is a subalgebra of H^{∞} , and since weak-* convergence in H^{∞} corresponds to weak convergence of analytic Toeplitz operators, \mathfrak{A}_F is weak-* closed.

Lemma 5. For ϕ an inner function, $\phi(0) = 0$, $\mathfrak{A}_{\phi} = H^{\infty}(\phi)$.

Proof. Since $H^{\infty}(\phi)$ is the weak-* closure of polynomials in ϕ and weak-* convergence in H^{∞} corresponds to weak-operator convergence for the associated Toeplitz operators, one has $H^{\infty}(\phi) \subset \mathbb{G}_{\phi}$. Conversely, if $T_f \in \mathbb{G}_{\phi}$, since $H^2(\phi)$ is a reducing subspace for T_{ϕ} and $1 \in H^{\infty}(\phi)$, $f = T_f(1) \in H^{\infty}(\phi)$, hence $\mathbb{G}_{\phi} \subset H^{\infty}(\phi)$.

Lemma 6. (I) is equivalent to

(III) for any $F \in H^{\infty}$, there exists an inner function ϕ with $\phi(0) = 0$ such that $\mathfrak{A}_F = H^{\infty}(\phi)$.

Proof. Assume (III), and suppose $\mathfrak{C}_F = H^\infty(\phi)$ and T_F has a nontrivial reducing subspace. Since $\phi \in \mathfrak{C}_F$, T_ϕ has a nontrivial reducing subspace, whence ϕ is not a linear-fractional transformation. Since $F \in H^\infty(\phi)$, F is a function of ϕ .

Conversely, for $F \in H^{\infty}$, let \mathbb{M} be the intersection of all subspaces of the type $H^{\infty}(\phi)$, ϕ inner with $\phi(0)=0$, containing F. Then, by Theorem 1, $\mathbb{M}=H^{\infty}(b)$, where b is inner, b(0)=0, and $F=C_b(G)=G(b)$ for some $G \in H^{\infty}$. By the construction it follows that G is not a function of a nontrivial inner function. Hence by (I), T_G has no nontrivial reducing subspaces, so the W^* algebra generated by T_G is all bounded operators on H^2 . In particular if $S: f(e^{i\theta}) \to e^{i\theta} f(e^{i\theta})$ is the standard shift on H^2 , there exists a sequence of polynomials $P_n(T_G^*, T_G)$ in T_G^* and T_G converging weakly to S; since $T_G = G(S)$,

$$S = w^* \lim_{n \to \infty} P_n(G(S)^*, G(S)).$$

Since T_b , a completely nonunitary isometry, is unitarily equivalent to a direct sum of copies of S,

$$\begin{split} T_b &= \underset{n \to \infty}{w\text{-*lim}} \ P_n(G(T_b)^*, \ G(T_b)), \quad \text{or} \\ T_b &= \underset{n \to \infty}{w\text{-*lim}} \ P_n(T_F^*, \ T_F), \end{split}$$

so T_b belongs to the W^* -algebra generated by T_F . Hence T_b has at least the reducing subspaces of T_F . Since F = f(b), T_b cannot have any more, hence $\mathfrak{A}_F = \mathfrak{A}_b = H^\infty(b)$, by Lemma 5.

Proof of Theorem 2. Combine Lemma 6 with Theorem 1.

5. Concluding remarks. In a related study [3], J. A. Deddens and Tin Kin Wong have made some progress on formulation (II) of the Nordgren conjecture for some special cases.

In a recent preprint, Entire Toeplitz operators, I. N. Baker, J. A. Deddens and J. L. Ullman answer the conjecture in the affirmative if ϕ is an entire function.

REFERENCES

1. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 17pp. MR 10, 381.

- 2. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, I. Reine Angew. Math. 213 (1963), 89-102. MR 28 #3350.
- 3. J. A. Deddens and Tin Kin Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261-273.
- 4. P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112. MR 27 #2868.
- 5. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood. Cliffs, N. J., 1965.
- 6. M. Loève, Probability theory, 2nd ed., University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 23 #A670.
- 7. E. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. MR 36 #6961.
- 8. ____, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175-181. MR 35 #7155.
- 9. G. C. Rota, On the representation of averaging operators, Rend. Sem. Mat. Univ. Padova 30 (1960), 52-64. MR 22 #2899.
- J. Ryff, Subordinate H^b functions, Duke Math. J., 33 (1966), 347-354.
 MR 33 #289.
- 11. T. P. Srinivasan and Ju-Kwei Wang, Weak *-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), edited by F. Virtel, Scott, Foresman, Chicago, Ill., 1966, pp. 216-249. MR 33 #6441.
- 12. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akad. Kiadó, Budapest, 1970; English transl., North-Holland, Amsterdam; American Elsevier, New York, 1971. MR 43 #947.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061