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STRONG UNIFORM DISTRIBUTIONS AND ERGODIC THEOREMS

J. R. BLUM1 AND L.-S. HAHN

ABSTRACT.    Let  G   and H   be locally compact  cr.Compact abelian groups,

S  a mapping from G  to H,  and IfJ. \   _,   a sequence of measures on  G.   We

define the notions:   " fl is a uniform distribution  with respect ot  \p-  \"   and

"3  is a strong uniform distribution".   We give a number of examples of these

notions and derive some general individual ergodic theorems for measure-pre-

serving transformations with discrete spectrum.

1. Introduction.   Let  G  and  H be locally compact cr-compact abelian

groups,   U  a mapping from   G  to H  and   [p. ; n = 1, 2, ■ • ■ \ a sequence of

finite measures on the Borel sets of G.   Below we define the notion   "u is

a uniform distribution with respect to the sequence  \p  !"   and   "(3 isa strong

uniform distribution."   We give conditions'under which u  is a strong uniform

distribution and show how these can be applied to obtain rather general indi-

vidual ergodic theorems for measure-preserving transformations with discrete

spectrum.

2. A convergence theorem. Let G and H be as above and G and H

their Bohr compactifications. Let p and v be the respective normalized

Haar measures on G and H. If / is an almost periodic (a.p.) function on

H (or G), we shall denote by / its continuous extension to H (or G). A

measure p on G together with a measurable mapping (l of G into H in-

duces a measure v on H by the formula 17(E) = p[Q~ (E)] for all Borel sets

E of H.

Theorem 1.   Assume that Ö is a mapping from  G  into H such that the

composite function f ° (A is a. p. on G  whenever f is an a. p.   function on  H.

Then the following assertions are equivalent:   (a)   There exists a sequence

of finite measures \p  \°°_,   on G  which converges weakly to p such that

the induced sequence \v  \ 072  H  converges weakly to v.   (Note that any

measure on G may he considered to be a measure on G  and similarly for H.)
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(b) Assertion (a) holds for every sequence \p  1°°,   of finite measures

on G  converging weakly to p.

(c) fzf dv = fG~f°Qdp for every  a.p.   function f on  H.

Proof.    First assume (a).   Let \p  i°°_,   be any sequence of finite mea-

sures converging weakly to p and let \v  i°°   ,   be the corresponding induced

measures.   If / is an  a.p.   function of H  it follows from the hypothesis that

Jr3/°Ö dpn^t,Gf°~& dp.   Now f£fjvn = fGfo\A dpn  by definition of i^.

Thus fjjf   dv     converges to   f^/°U dp   fot every function /   e C(H).   But it

then follows from (a) that   fc/° (1 dp = frjf dv and (b) holds by the definition

of weak convergence.   That (b) implies (c) is immediate from the above re-

marks, and similarly that (c) implies (a).

3.   Uniform distributions.    Assume now that H  is compact and denote

Haar measure on  H  by  v.   If (t is a Borel mapping of G  to  H  and \p  i"0   ,

is a sequence of bounded measures on  G  converging weakly to p.,  we shall

say that  (f is a uniform distribution with respect to \p   j  provided the se-

quence  \v   \ of induced measures converges weakly to v on  H.   If, more-

over,  (Î is a uniform distribution with respect to every sequence \¡i   \ of

bounded measures converging weakly to  p   on  G,   we shall say that U  is a

strong uniform distribution.   Theorem 1 says that if f ° Q is  a.p.   on  G  for

every / £ CÍH), then these two concepts coincide.    Actually a little reflec-

tion shows that it is sufficient for (l  to have the property that f° U differs

from an  a.p.  function on  G  in such a way that the difference converges to

zero except on a set whose closure in   G   has Haar measure  0.   In that case

there will exist an extension  f°Q   to  G which is continuous except on a

set of Haar measure zero.

Let H  be compact and H  be its discrete dual.   We shall write    ( y, y \

for the character y e H.   If v is a measure on  H we write its Fourier-Stielt-

ies transform as

vXy) = J   (y, y) dv(y)    for y £ ft

The following lemma is undoubtedly known and we shall not give its

proof.

Lemma 2.   A bounded sequence  \v  1°°   ,   of measures on a compact abe-

lian group H  converges weakly to a finite measure v  if and only if

lim„-.o<.^„^y^ = ¿iy) for al1 y e a-

Combining Theorem 1 and Lemma 2 we obtain a Weyl criterion for uni-

form distributions.
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Theorem 3.   A mapping u of G into H is a uniform distribution with

respect to the sequence  {p.  \  if and only if lim _^xfGiy°Q)dp   = 0 for every

character y on H not the identity.

An analogous version holds for strong uniform distributions.

4.   Some examples.   In this section we give some conditions for a map-

ping to be a strong uniform distribution, and some examples.

Theorem 4.    Let G  be a locally compact a-'compact abelian group,   H  a

compact abelian group and U  a continuous homomorphism of G onto a dense

subgroup of H.    Then for every f £ ein) the composite function f ° d is a.p.

on G and U  is a strong uniform distribution.

This is essentially a rephrasing of (26.12) in Hewitt and Ross L2J.

If q is a positive integer, let Z be the cyclic subgroup !exp(2?7z/Vr7), 0< k

< q - l\ of the circle group T. With G as above, define for each y £G the group

<p(y) = T if y has infinite order, and put cp(y) = Z    if y has order q.

Also define   U   (x) = (x, y) £cf>(y).   Then clearly Theorem 4 applies

and we have

Corollary 5.   For each y £ G  the mapping U     is a strong uniform distri-

bution of G   272ÍO  cp{y).

Next we generalize the classical Kronecker theorem.   Let  u be a contin-

uous homomorphism of G into  H.   Then  U induces a natural homomorphism

U from the dual  H of H into the dual  G of G  via the relation

(Q(x), y) = (x, &(y))     fot all x e G and y e H.

Let &■:   G—>H (/'= 1, •••» m)  be homomorphisms of G  into  H.   The

product homomorphism  U= flj x fl2 x •■• x fl     is the natural homomorphism

of G into the product group IIm_.H given by

772

au) = (ä m, ■■•,ânu)) e IT h.

We shall say the homomorphisms  Uj , • • • , (2     of G  into  H ate indepen-

dent if y. e H, j = 1, - - - , 772,   and 2? jOt-iy.) = 0 (the identity in G) implies

that (y1? •■■ ,ym) is the identity in the dual Um=lH of ITm=1//.

Theorem 6.   Let 0. :   G —» H (;' = 1, • • • , 772)  be independent continuous

homomorphisms of a locally compact a-compact abelian group G  into a com-

pact abelian group H.    Then the product homomorphism Q = Q^ x • • • x Ö

is a strong uniform distribution of G  into ITT2 ,H.
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The proof is a straightforward application of Theorem 3.

Let  G = Z  and H = R/Z.   Suppose \., • • • , À     are real numbers inde-

pendent over the integers.   Setting (¡1.(72) = À n (mod l), 72 £ Z (j = 1, • • ■ , m)

in Theorem 6, we obtain the classical Kronecker theorem.

Corollary 7.    Under the hypotheses of Theorem 6, each  (l.  is a strong

uniform distribution of G  into H.

It should be remarked that it is not difficult to construct mappings which

are a uniform distribution with respect to some appropriate sequence of mea-

sures, but which are not strong uniform. On the other hand we have been un-

able to decide whether the mapping n2a (mod l) with a irrational is a strong

uniform distribution.   We hope to return to these questions subsequently.

5.   Individual ergodic theorems.   Let (ÍÍ, u, v) be a separable Lebesgue

space endowed with a nonatomic probability measure, which for simplicity

we take to be the unit interval with Lebesgue measure.   Let  T be a bimea-

surable, measure-preserving transformation mapping 0  onto Í).   In [l] it is

shown that if \p  \°°_,   is a sequence of probability measures on  Z  such that

\p  !°°_,   converges weakly to Haar measure on  Z, then for / £ L (ÇI) we have

fz f(T x) dpn(k)  converges in  L2  to  Pf,  the projection of / onto the sub-

space of Lj  invariant with respect to  T.   In fact the condition that {p  }*"   .

should converge weakly to Haar measure on  Z  is shown in [l] to be both

necessary and sufficient for the mean ergodic theorem to hold for all f £ L?.

We have been unable to date to generalize this result to the individual ergodic

theorem, but we are able to prove the following version.

Theorem 8.   Let  T be as above and suppose  T has countable discrete

spectrum.    Then there exists S C Q with m(S) = 1  such that for each  x £ S,

f a continuous function on 0,   and \pn\^_l  a sequence of probability mea-

sures on Z  converging weakly to Haar measure on  Z,   we have

jzf(Tkx)dpn^(Pf)(x),

where  P  is as above.

Theorem 8 is the individual ergodic theorem for transformations with

discrete spectrum.   To prove the theorem we shall show .that there exists a

set S with 772(5) = 1  such that for x e S,  if we define the mapping (2    on Z

by ™xik) = T x,  then  Ux is a strong uniform distribution.   The result will

then follow by noting that the classical Birkhoff individual ergodic theorem

states that there exists a set S  with m(S) = 1,   such that for  x e S we have

|ZA^ x)dpn(k)—*(Pf)(x)  in the case when for each 72  the measure p    gives
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mass   I/72  to each of the integers   1, 2, ■ • -, n.   It is easy to verify that this

sequence of measures converges to Haar measure on  Z  (see e.g. [l]).

Now if   T has countable discrete spectrum we may assume that  T is a

rotation on a compact metric group, i.e., we may assume that  Tx = x + x     x

£ Q, x.  efi  and xQ   fixed, with  Í2  a compact metric group.   Then   T x =

x + &xQ,   and it is trivial to verify that for / £ C(Q)  we have {fiTkx)\™__oo

is an a.p.  function on  Z.   The theorem then follows from Theorem 1.
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