STRONG UNIFORM DISTRIBUTIONS AND ERGODIC THEOREMS

J. R. BLUM¹ AND L.-S. HAHN

ABSTRACT. Let G and H be locally compact σ -compact abelian groups, \mathfrak{A} a mapping from G to H, and $\{\mu_n\}_{n=1}^{\infty}$ a sequence of measures on G. We define the notions: " \mathfrak{A} is a uniform distribution with respect of $\{\mu_n\}$ " and " \mathfrak{A} is a strong uniform distribution". We give a number of examples of these notions and derive some general individual ergodic theorems for measure-preserving transformations with discrete spectrum.

- 1. Introduction. Let G and H be locally compact σ -compact abelian groups, $\mathcal C$ a mapping from G to H and $\{\mu_n;\ n=1,\,2,\,\cdots\}$ a sequence of finite measures on the Borel sets of G. Below we define the notion " $\mathcal C$ is a uniform distribution with respect to the sequence $\{\mu_n\}$ " and " $\mathcal C$ is a strong uniform distribution." We give conditions under which $\mathcal C$ is a strong uniform distribution and show how these can be applied to obtain rather general individual ergodic theorems for measure-preserving transformations with discrete spectrum.
- 2. A convergence theorem. Let G and H be as above and \overline{G} and \overline{H} their Bohr compactifications. Let $\overline{\mu}$ and $\overline{\nu}$ be the respective normalized Haar measures on \overline{G} and \overline{H} . If f is an almost periodic (a.p.) function on H (or G), we shall denote by \overline{f} its continuous extension to \overline{H} (or \overline{G}). A measure μ on G together with a measurable mapping \widehat{G} of G into H induces a measure ν on H by the formula $\nu(E) = \mu[\widehat{G}^{-1}(E)]$ for all Borel sets E of H.

Theorem 1. Assume that ${\mathfrak A}$ is a mapping from G into H such that the composite function $f \circ {\mathfrak A}$ is a.p. on G whenever f is an a.p. function on H. Then the following assertions are equivalent: (a) There exists a sequence of finite measures $\{\mu_n\}_{n=1}^\infty$ on G which converges weakly to $\overline{\mu}$ such that the induced sequence $\{\nu_n\}_{n=1}^\infty$ on H converges weakly to ν . (Note that any measure on G may be considered to be a measure on \overline{G} and similarly for H.)

Received by the editors October 9, 1973.

AMS (MOS) subject classifications (1970). Primary 43A05, 28A65.

Research supported by N.S.F. Grant GP 25736.

- (b) Assertion (a) holds for every sequence $\{\mu_n\}_{n=1}^{\infty}$ of finite measures on G converging weakly to $\overline{\mu}$.
 - (c) $\int_{\overline{H}} \overline{f} d\overline{v} = \int_{\overline{G}} \overline{f} \circ \widehat{G} d\overline{\mu}$ for every a.p. function f on H.
- **Proof.** First assume (a). Let $\{\mu_n\}_{n=1}^{\infty}$ be any sequence of finite measures converging weakly to $\overline{\mu}$ and let $\{\nu_n\}_{n=1}^{\infty}$ be the corresponding induced measures. If f is an a.p. function of H it follows from the hypothesis that $\int_{\overline{G}} \overline{f \circ \mathcal{Q}} \ d\mu_n \to \int_{\overline{G}} \overline{f \circ \mathcal{Q}} \ d\overline{\mu}$. Now $\int_{\overline{H}} \overline{f} \ d\nu_n = \int_{\overline{G}} \overline{f \circ \mathcal{Q}} \ d\mu_n$ by definition of ν_n . Thus $\int_{\overline{H}} \overline{f} \ d\nu_n$ converges to $\int_{\overline{G}} \overline{f \circ \mathcal{Q}} \ d\overline{\mu}$ for every function $\overline{f} \in C(\overline{H})$. But it then follows from (a) that $\int_{\overline{G}} \overline{f \circ \mathcal{Q}} \ d\overline{\mu} = \int_{\overline{H}} \overline{f} \ d\overline{\nu}$ and (b) holds by the definition of weak convergence. That (b) implies (c) is immediate from the above remarks, and similarly that (c) implies (a).
- 3. Uniform distributions. Assume now that H is compact and denote Haar measure on H by ν . If $\widehat{\mathbb{G}}$ is a Borel mapping of G to H and $\{\mu_n\}_{n=1}^\infty$ is a sequence of bounded measures on G converging weakly to $\overline{\mu}$, we shall say that $\widehat{\mathbb{G}}$ is a uniform distribution with respect to $\{\mu_n\}$ provided the sequence $\{\nu_n\}$ of induced measures converges weakly to ν on H. If, moreover, $\widehat{\mathbb{G}}$ is a uniform distribution with respect to every sequence $\{\mu_n\}$ of bounded measures converging weakly to $\overline{\mu}$ on G, we shall say that $\widehat{\mathbb{G}}$ is a strong uniform distribution. Theorem 1 says that if $f \circ \widehat{\mathbb{G}}$ is a.p. on G for every $f \in C(H)$, then these two concepts coincide. Actually a little reflection shows that it is sufficient for $\widehat{\mathbb{G}}$ to have the property that $f \circ \widehat{\mathbb{G}}$ differs from an a.p. function on G in such a way that the difference converges to zero except on a set whose closure in \overline{G} has Haar measure 0. In that case there will exist an extension $\overline{f} \circ \widehat{\mathbb{G}}$ to \overline{G} which is continuous except on a set of Haar measure zero.

Let H be compact and \hat{H} be its discrete dual. We shall write $\langle y, y \rangle$ for the character $y \in \hat{H}$. If ν is a measure on H we write its Fourier-Stieltjes transform as

$$\hat{\nu}(\gamma) = \int_{H} \langle y, \gamma \rangle d\nu(y) \text{ for } \gamma \in \hat{H}.$$

The following lemma is undoubtedly known and we shall not give its proof.

Lemma 2. A bounded sequence $\{\nu_n\}_{n=1}^{\infty}$ of measures on a compact abelian group H converges weakly to a finite measure ν if and only if $\lim_{n\to\infty}\hat{\nu}_n(\gamma)=\hat{\nu}(\gamma)$ for all $\gamma\in\hat{H}$.

Combining Theorem 1 and Lemma 2 we obtain a Weyl criterion for uniform distributions.

Theorem 3. A mapping \mathfrak{A} of G into H is a uniform distribution with respect to the sequence $\{\mu_n\}$ if and only if $\lim_{n\to\infty}\int_G (\gamma\circ\mathfrak{A})d\mu_n=0$ for every character γ on H not the identity.

An analogous version holds for strong uniform distributions.

4. Some examples. In this section we give some conditions for a mapping to be a strong uniform distribution, and some examples.

Theorem 4. Let G be a locally compact σ -compact abelian group, H a compact abelian group and $\mathfrak A$ a continuous homomorphism of G onto a dense subgroup of H. Then for every $f \in C(H)$ the composite function $f \circ \mathfrak A$ is a strong uniform distribution.

This is essentially a rephrasing of (26.12) in Hewitt and Ross [2].

If q is a positive integer, let Z_q be the cyclic subgroup $\{\exp{(2\pi i k/q)},\ 0 \le k \le q-1\}$ of the circle group T. With G as above, define for each $\gamma \in \hat{G}$ the group $\phi(\gamma) = T$ if γ has infinite order, and put $\phi(\gamma) = Z_q$ if γ has order q.

Also define $(f_{\gamma}(x) = \langle x, \gamma \rangle \in \phi(\gamma)$. Then clearly Theorem 4 applies and we have

Corollary 5. For each $\gamma \in \hat{G}$ the mapping \mathfrak{C}_{γ} is a strong uniform distribution of G into $\phi(\gamma)$.

Next we generalize the classical Kronecker theorem. Let $\hat{\mathbb{C}}$ be a continuous homomorphism of G into H. Then $\hat{\mathbb{C}}$ induces a natural homomorphism $\hat{\mathbb{C}}$ from the dual \hat{H} of H into the dual \hat{G} of G via the relation

$$\langle \widehat{\mathfrak{A}}(x), \gamma \rangle = \langle x, \widehat{\mathfrak{A}}(\gamma) \rangle$$
 for all $x \in G$ and $\gamma \in \widehat{H}$.

Let $\mathcal{C}_j \colon G \to H$ $(j=1,\cdots,m)$ be homomorphisms of G into H. The product homomorphism $\mathcal{C} = \mathcal{C}_1 \times \mathcal{C}_2 \times \cdots \times \mathcal{C}_m$ is the natural homomorphism of G into the product group $\prod_{j=1}^m H$ given by

$$\mathfrak{A}(x) = (\mathfrak{A}_1(x), \dots, \mathfrak{A}_m(x)) \in \prod_{i=1}^m H.$$

We shall say the homomorphisms $\widehat{\mathbb{Q}}_1, \dots, \widehat{\mathbb{Q}}_m$ of G into H are independent if $\gamma_j \in H$, $j=1,\dots,m$, and $\sum_{j=1}^m \widehat{\mathbb{Q}}_j(\gamma_j) = 0$ (the identity in \widehat{G}) implies that $(\gamma_1,\dots,\gamma_m)$ is the identity in the dual $\prod_{j=1}^m \widehat{H}$ of $\prod_{j=1}^m H$.

Theorem 6. Let $\mathfrak{A}_j: G \to H$ $(j=1,\dots,m)$ be independent continuous homomorphisms of a locally compact σ -compact abelian group G into a compact abelian group H. Then the product homomorphism $\mathfrak{A} = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_m$ is a strong uniform distribution of G into $\prod_{i=1}^m H$.

STRONG UNIFORM DISTRIBUTIONS, ERGODIC THEOREMS

The proof is a straightforward application of Theorem 3.

Let G=Z and H=R/Z. Suppose $\lambda_1, \dots, \lambda_m$ are real numbers independent over the integers. Setting $\mathfrak{C}_j(n) \equiv \lambda_j n \pmod{1}, n \in Z \ (j=1,\dots,m)$ in Theorem 6, we obtain the classical Kronecker theorem.

Corollary 7. Under the hypotheses of Theorem 6, each \mathfrak{A}_j is a strong uniform distribution of G into H.

It should be remarked that it is not difficult to construct mappings which are a uniform distribution with respect to some appropriate sequence of measures, but which are not strong uniform. On the other hand we have been unable to decide whether the mapping $n^2\alpha \pmod{1}$ with α irrational is a strong uniform distribution. We hope to return to these questions subsequently.

5. Individual ergodic theorems. Let (Ω, Ω, ν) be a separable Lebesgue space endowed with a nonatomic probability measure, which for simplicity we take to be the unit interval with Lebesgue measure. Let T be a bimeasurable, measure-preserving transformation mapping Ω onto Ω . In [1] it is shown that if $\{\mu_n\}_{n=1}^{\infty}$ is a sequence of probability measures on Z such that $\{\mu_n\}_{n=1}^{\infty}$ converges weakly to Haar measure on \overline{Z} , then for $f \in L_2(\Omega)$ we have $\int_Z f(T^k x) d\mu_n(k)$ converges in L_2 to Pf, the projection of f onto the subspace of L_2 invariant with respect to T. In fact the condition that $\{\mu_n\}_{n=1}^{\infty}$ should converge weakly to Haar measure on \overline{Z} is shown in [1] to be both necessary and sufficient for the mean ergodic theorem to hold for all $f \in L_2$. We have been unable to date to generalize this result to the individual ergodic theorem, but we are able to prove the following version.

Theorem 8. Let T be as above and suppose T has countable discrete spectrum. Then there exists $S \subset \Omega$ with m(S) = 1 such that for each $x \in S$, f a continuous function on Ω , and $\{\mu_n\}_{n=1}^{\infty}$ a sequence of probability measures on Z converging weakly to Haar measure on \overline{Z} , we have

$$\int_{\mathcal{T}} f(T^k x) d\mu_n \xrightarrow{n} (Pf)(x),$$

where P is as above.

Theorem 8 is the individual ergodic theorem for transformations with discrete spectrum. To prove the theorem we shall show that there exists a set S with m(S)=1 such that for $x\in S$, if we define the mapping \mathfrak{A}_x on Z by $\mathfrak{A}_x(k)=T^kx$, then \mathfrak{A}_x is a strong uniform distribution. The result will then follow by noting that the classical Birkhoff individual ergodic theorem states that there exists a set S with m(S)=1, such that for $x\in S$ we have $\int_Z f(T^kx) d\mu_n(k) \to (Pf)(x)$ in the case when for each n the measure μ_n gives

mass 1/n to each of the integers 1, 2, ..., n. It is easy to verify that this sequence of measures converges to Haar measure on \overline{Z} (see e.g. [1]).

Now if T has countable discrete spectrum we may assume that T is a rotation on a compact metric group, i.e., we may assume that $Tx = x + x_0$, $x \in \Omega$, $x_0 \in \Omega$ and x_0 fixed, with Ω a compact metric group. Then $T^k x = x + kx_0$, and it is trivial to verify that for $f \in C(\Omega)$ we have $\{f(T^k x)\}_{k=-\infty}^{\infty}$ is an a.p. function on Z. The theorem then follows from Theorem 1.

REFERENCES

- 1. J. R. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429.
- 2. E. Hewitt and K. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW MEXICO. ALBUQUERQUE, NEW MEXICO 87131 (Current address of L.-S. Hahn)

Current address (J. R. Blum): Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsis 53201