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ON INVERSE LIMITS OF HOMOTOPY SETS

PETER J. KAHN1

ABSTRACT.  An elementary proof is given that, under certain conditions

on a space F,  the homotopy set [X, F\ maps bijectively onto the inverse

limit of homotopy sets determined by the finite subcomplexes of X.   The

only other satisfactory proof known requires the Brown representability

theorem.

Throughout this note we deal only with based maps and based CW com-

plexes.   X and F will be such CW complexes, and \Xa\ will be the set of

finite subcomplexes of X,  directed by inclusion.   We assume that  F is con-

nected2 and that each homotopy group of  F is finite.

Theorem 1.    The natural map

27°

[X, F]—î-*lim[Xa. F]
a

is bijective.

This result is trivial when  X has dimension  0 or is a finite complex.

Moreover, when  X  is an increasing union of a sequence [X   j of subcom-

plexes such that 77x    is surjective for each n,  then an inductive application

of the homotopy extension property yields that 77„  is surjective.   In parti-

cular, this gives surjectivity when X  is a countable  CW  complex.   The

problem is that no such straightforward argument seems to work for uncountable X.

Define   L®X to be the inverse limit set in Theorem 1.   The theorem
F

may then be interpreted as saying that  Lp  is a representable functor.

This suggests a connection between Theorem 1 and the Brown represent-

ability theorem, and, indeed, Brown's theorem has been used to prove Theo-
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rem 1 [3], [5, p. 3-18].   The purpose of this note is to present a direct, ele-

mentary proof.

Theorem 1 is generally false without some kind of finiteness condition

on 77.F (e.g., see [4]), but the surjectivity of r/v, for all X, can be proved

using an algebraic condition on F [l], [2]. The precise conditions for sur-

jectivity are not yet well understood.

Now define

LÍ.X = lim[X    x 7 u Xx di, F],
r 4— ex

a

where  7 is the unit interval.   (Li   can be defined analogously for 72 =

2, I, • • , but they will not be needed.)   We then have the following "Mayer-

Vietoris" sequence of based sets

27v i . 77v
[X x 7, F] —Í- LlFX -y-î[X, F] —*- L°X,

lo

in which  27^.  is induced by restriction, as in  77^,  and  /'    and  i.   ate induced

by the two natural inclusions of X into  Xn x 7 U X x dl.   Since  2'    ° nh =

1   ... 1 OX
ll°nX ls a bisection,  77 ¿  is injective.

Lemma 1.    The above sequence is exact at [X, F]-

By this we mean that nx° A=nx° z0' wnich we take as obvious, and that if

rtyXa) = TTyAb),  then  a = iQ(c), b = i Ac)  fot some  c £ LÍX.

n i
Theorem 2.   nv  and nv  are surjective.

x x 1

Therefore,  rr\, is bijective.   Moreover, since  77^ is surjective, it fol-

lows that  iQ = /'.,  which, by Lemma 1, forces 77^  to be injective.   Thus,

Theorem 2 implies Theorem 1.

By the remarks made earlier, we can obtain Theorem 2 for  X provided

that we can prove it for every skeleton of X.   It clearly holds for the 0-

skeleton of X.   Thus, we need only

Lemma 2. Let Y be an n-dimensional CW complex, n > 1, and let

X be a subcomplex of Y containing the (n — \)-skeleton of Y. If nx is

surjective,   k = 0, 1,  then so is 77* .

The proofs of Lemmas 1 and 2 are based on the following two element-

ary facts:

Fact A.    A72 inverse limit of nonempty finite sets is nonempty.

Fact B.   Let  Y be a CW complex,  X a subcomplex of Y,  and F as

before.    Let g:   X—' F be any map.   If Y\X consists of finitely many



INVERSE LIMITS OF HOMOTOPY SETS 489

ce77s, then there are only finitely many homotopy classes   rel  X of exten-

sions   Y —> F of g.

Let [Y, F\    denote this set of homotopy classes.   Its finiteness is a

result of elementary obstruction theory.   Fact  B  applies when  X  is empty,

and it still holds, of course, if  "rel   X"   is deleted.   Fact A  is a direct

consequence of Ko'nig's lemma on finitely branching trees.

Proof of Lemma 1.   For each a,  there are maps /«, /-:   [Xax 7 UX x

dl, F] —' [X, F]  determined, as before, by the two natural inclusions of X.

Since n^ia) = n^ib),  there exists, for each   a,   a  ca satisfying  ;0(ca) =

a, jjtj = b.   Letting / a be the set of all such  ca,  we note that the  /a's,

together with restriction maps, form an inverse system.   Since  Xax 7 is a

finite CW complex, Fact  B  implies that J a is finite.   Fact  A then produces

ace lim/aC LpX  with the required properties,   a

Proof of Lemma 2.   The proof for nL  is the same as that for 7Ty,  and

so for notational simplicity we do only the latter.

Case 1.    Y\X has only finitely many cells.

We redefine L pX  and  LpY  by passing to cofinal subsets of [Xai  and

\Ya\: Namely, we use only  Xa containing the boundaries of all cells in

y\X,   and we use only   Ya of the form  Xau(Y\X).   This enables us to de-

fine the restriction  L°CY —. L° X.
F F

Fix  a,  and note that the commutative diagram

lYn, F]a'

ÍY, F] [X   . F]

[X,  F]

has, by homotopy extension, the following exactness property:   If cp a £

[Y a, F] and i/r £ [X, F]  restrict  to ifr a £[Xa,  F],  then  there  exists  a

cp e[V, F]  restricting to both cpa and i/r.   Let ]a be the set of all such cp.

By Fact B, J a is finite.

If \(pA £ LpY  is arbitrary,  {i/VJ  £ L pX obtained from it by restriction,

and if ijj e [X, F]  satisfies  rtyitp) = it//al,  which  ift  exists by hypothesis,

then the collection of all J a that we obtain as above for these cpa, xfr a and

i/r  form a system directed by inclusion.   By Fact A,   il/ a is nonempty.

Each member cp  satisfies  77y(<p) = {<pai-

Case 2.   The general case.    So far we have not used the full strength

of Fact B:   Namely, that it applies to homotopy classes rel  X.   We now use

this.
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We begin as before by choosing \cp J e LpY',  restricting to  \ip J e L°pX,

and pulling back to a class ip e [X, F]  represented by some g:   X — F.   Let

i  index the cells of y\x, and let \a\ be the collection of its finite subsets, directed

by inclusion.   Define Yia) = XU\e.\i ea\, and let pa:   [Yia), F]   — ÍYia), F]

be the standard projection.   In Case 1, we showed that  image p     contains

a nonempty finite set J^ such that 7Ty(a)ija) = {<pa\\ Yia).    Let   Ka = p~H/^)

C [y(a), F]  .   Using Fact A and arguing as before, we conclude that there is

a class  ¡(pQ.l e lim   Ka.   For each singleton  a,  let f'^ represent cpa ,  let

cp   e [Y, F]     be given by U/rr >  an^ let 9^ e ^' ^ be given by the same

map.   For any  a, cp'\[YÍa), F]    = cp'^ .   Letting   Ya be any finite subcomplex

of  Y,  we choose  a so that   Yia) 3 Ya,  and we obtain the desired conclusion

that

n°Yiob) = {ip\Ya\=\pŒicp'a)\Ya\ = icf>J.     O
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