ON INVERSE LIMITS OF HOMOTOPY SETS PETER I. KAHN¹ ABSTRACT. An elementary proof is given that, under certain conditions on a space F, the homotopy set [X, F] maps bijectively onto the inverse limit of homotopy sets determined by the finite subcomplexes of X. The only other satisfactory proof known requires the Brown representability theorem. Throughout this note we deal only with based maps and based CW complexes. X and F will be such CW complexes, and $\{X_{\alpha}\}$ will be the set of finite subcomplexes of X, directed by inclusion. We assume that F is connected X and that each homotopy group of X is finite. Theorem 1. The natural map $$[X, F] \xrightarrow{\pi_X^0} \lim_{\alpha} [X_{\alpha}, F]$$ is bijective. This result is trivial when X has dimension 0 or is a finite complex. Moreover, when X is an increasing union of a sequence $\{X_n\}$ of subcomplexes such that $\pi^0_{X_n}$ is surjective for each n, then an inductive application of the homotopy extension property yields that π^0_{X} is surjective. In particular, this gives surjectivity when X is a countable CW complex. The problem is that no such straightforward argument seems to work for uncountable X. Define $L_F^0 X$ to be the inverse limit set in Theorem 1. The theorem may then be interpreted as saying that L_F^0 is a representable functor. This suggests a connection between Theorem 1 and the Brown representability theorem, and, indeed, Brown's theorem has been used to prove Theorem Received by the editors September 6, 1973 and, in revised form, November 17, 1973. AMS (MOS) subject classifications (1970). Primary 55E05; Secondary 55B20. Key words and phrases. Inverse limit, homotopy set. I Partly supported by NSF Grant GP 33960X. ² There need be no restriction on the number of components of F; our assumption is merely for convenience. rem 1 [3], [5, p. 3.18]. The purpose of this note is to present a direct, elementary proof. Theorem 1 is generally false without some kind of finiteness condition on $\pi_i F$ (e.g., see [4]), but the surjectivity of π_X^0 , for all X, can be proved using an algebraic condition on F [1], [2]. The precise conditions for surjectivity are not yet well understood. Now define $$L_F^1 X = \lim_{\alpha} [X_{\alpha} \times I \cup X \times \partial I, F],$$ where I is the unit interval. (L_F^n can be defined analogously for $n=2,3,\cdots$, but they will not be needed.) We then have the following "Mayer-Vietoris" sequence of based sets $$[X \times I, F] \xrightarrow{\pi_X^1} L_F^1 X \xrightarrow{i_1} [X, F] \xrightarrow{\pi_X^0} L_F^0 X,$$ in which π^1_X is induced by restriction, as in π^0_X , and i_0 and i_1 are induced by the two natural inclusions of X into $X_\alpha \times I \cup X \times \partial I$. Since $i_0 \circ \pi^1_X = i_1 \circ \pi^1_X$ is a bijection, π^1_X is injective. Lemma 1. The above sequence is exact at [X, F]. By this we mean that $\pi_X^0 \circ i_1 = \pi_X^0 \circ i_0$, which we take as obvious, and that if $\pi_X^0(a) = \pi_X^0(b)$, then $a = i_0(c)$, $b = i_1(c)$ for some $c \in L_F^1 X$. Theorem 2. π_X^0 and π_X^1 are surjective. Therefore, π_X^1 is bijective. Moreover, since π_X^1 is surjective, it follows that $i_0 = i_1$, which, by Lemma 1, forces π_X^0 to be injective. Thus, Theorem 2 implies Theorem 1. By the remarks made earlier, we can obtain Theorem 2 for X provided that we can prove it for every skeleton of X. It clearly holds for the 0-skeleton of X. Thus, we need only Lemma 2. Let Y be an n-dimensional CW complex, $n \ge 1$, and let X be a subcomplex of Y containing the (n-1)-skeleton of Y. If π_X^k is surjective, k = 0, 1, then so is π_Y^k . The proofs of Lemmas 1 and 2 are based on the following two elementary facts: Fact A. An inverse limit of nonempty finite sets is nonempty. Fact B. Let Y be a CW complex, X a subcomplex of Y, and F as before. Let $g: X \to F$ be any map. If $Y \setminus X$ consists of finitely many cells, then there are only finitely many homotopy classes rel X of extensions $Y \to F$ of g. Let $[Y, F]_g$ denote this set of homotopy classes. Its finiteness is a result of elementary obstruction theory. Fact B applies when X is empty, and it still holds, of course, if "rel X" is deleted. Fact A is a direct consequence of König's lemma on finitely branching trees. Proof of Lemma 1. For each α , there are maps j_0, j_1 : $[X_\alpha \times I \cup X \times \partial I, F] \to [X, F]$ determined, as before, by the two natural inclusions of X. Since $\pi_X^0(a) = \pi_X^0(b)$, there exists, for each α , a c_α satisfying $j_0(c_\alpha) = a$, $j_1(c_\alpha) = b$. Letting J_α be the set of all such c_α , we note that the J_α 's, together with restriction maps, form an inverse system. Since $X_\alpha \times I$ is a finite CW complex, Fact B implies that J_α is finite. Fact A then produces a $c \in \lim_{\alpha \to \infty} J_\alpha \subset L_F^1 X$ with the required properties. \square Proof of Lemma 2. The proof for π_X^1 is the same as that for π_X^0 , and so for notational simplicity we do only the latter. Case 1. $Y \setminus X$ has only finitely many cells. We redefine $L_F^0 X$ and $L_F^0 Y$ by passing to cofinal subsets of $\{X_\alpha\}$ and $\{Y_\alpha\}$: Namely, we use only X_α containing the boundaries of all cells in $Y \setminus X$, and we use only Y_α of the form $X_\alpha \cup (Y \setminus X)$. This enables us to define the restriction $L_F^0 Y \to L_F^0 X$. Fix α , and note that the commutative diagram has, by homotopy extension, the following exactness property: If $\phi_{\alpha} \in [Y_{\alpha}, F]$ and $\psi \in [X, F]$ restrict to $\psi_{\alpha} \in [X_{\alpha}, F]$, then there exists a $\phi \in [Y, F]$ restricting to both ϕ_{α} and ψ . Let J_{α} be the set of all such ϕ . By Fact B, J_{α} is finite. If $\{\phi_{\alpha}\}\ \in L_F^0 Y$ is arbitrary, $\{\psi_{\alpha}\}\ \in L_F^0 X$ obtained from it by restriction, and if $\psi \in [X,F]$ satisfies $\pi_X^0(\psi)=\{\psi_{\alpha}\}$, which ψ exists by hypothesis, then the collection of all J_{α} that we obtain as above for these $\phi_{\alpha},\psi_{\alpha}$ and ψ form a system directed by inclusion. By Fact A, $\bigcap J_{\alpha}$ is nonempty. Each member ϕ satisfies $\pi_X^0(\phi)=\{\phi_{\alpha}\}$. Case 2. The general case. So far we have not used the full strength of Fact B: Namely, that it applies to homotopy classes rel X. We now use this. We begin as before by choosing $\{\phi_\alpha\} \in L_F^0 Y$, restricting to $\{\psi_\alpha\} \in L_F^0 X$, and pulling back to a class $\psi \in [X, F]$ represented by some $g \colon X \to F$. Let \emptyset index the cells of $Y \setminus X$, and let $\{\sigma\}$ be the collection of its finite subsets, directed by inclusion. Define $Y(\sigma) = X \cup \{e_i \mid i \in \sigma\}$, and let $p_\sigma \colon [Y(\sigma), F]_g \to [Y(\sigma), F]$ be the standard projection. In Case 1, we showed that image p_σ contains a nonempty finite set J_σ such that $\pi^0_{Y(\sigma)}(J_\sigma) = \{\phi_\alpha\} \mid Y(\sigma)$. Let $K_\sigma = p_\sigma^{-1}(J_\sigma) \subset [Y(\sigma), F]_g$. Using Fact A and arguing as before, we conclude that there is a class $\{\phi_\sigma'\} \in \lim_{\sigma \to \infty} K_\sigma$. For each singleton σ , let f_σ' represent ϕ_σ' , let $\phi' \in [Y, F]_g$ be given by $\bigcup f_\sigma'$, and let $\phi \in [Y, F]$ be given by the same map. For any σ , $\phi' \mid [Y(\sigma), F]_g = \phi_\sigma'$. Letting Y_α be any finite subcomplex of Y, we choose σ so that $Y(\sigma) \supset Y_\alpha$, and we obtain the desired conclusion that $$\pi_Y^0(\phi) = \{\phi | Y_\alpha\} = \{p_\sigma(\phi'_\sigma) | Y_\alpha\} = \{\phi_\alpha\}. \quad \Box$$ ## REFERENCES - 1. J. F. Adams, A variant of E. H. Brown's representability theorem, Topology 10 (1971), 185-198. MR 44 #1018. - 2. A. Deleanu, Remark on the Brown-Adams representability theorem, Syracuse University, 1971 (mimeo). - 3. P. J. Kahn, Brown's representability theorem for compact functors, Cornell University, Ithaca, N. Y., 1972 (mimeo). - 4. J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 28 #2544. - 5. D. Sullivan, Geometric topology. Part I (revised April, 1971), M.I.T. photo offset. DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850 Current address: Mathematisches Institüt der Universität Heidelberg, 6900 Heidelberg 1 im Neuenheimer Feld 288, Heidelberg, West Germany