ON ITERATES OF CONVOLUTIONS

SHAUL R. FOGUEL¹

ABSTRACT. Let μ be a signed measure, of total variation one, on a locally compact Abelian group. We study in this note the ideal $I = \{\tau: \tau \ll m \text{ and } \| \mu^n * \tau \| \to 0\}$ where m is the Haar measure.

Let G be a locally compact Abelian group, Γ its dual group and m its Haar measure. Throughout this note we shall use the notation of [5].

Let μ be a fixed signed measure (not necessarily continuous with respect to *m*), let ν be the total variation of μ . We shall assume throughout:

Assumption. $\nu(G) = 1$.

Definition 1. $I = \{\tau: \tau \ll m \text{ and } \|\mu^n * \tau\| \to 0 \text{ as } n \to \infty\}.$

Definition 2. Let J be the closed ideal, of signed measures, generated by $(\mu_A - \nu(A)\mu) * \eta$ where $\eta \ll m$, A is a measurable subset of G and μ_A is the restriction of μ to A.

Lemma 1. $J \subset I$.

Proof. Let $A \subseteq G$ satisfy $0 < \nu(A) < 1$. Put $\mu_1 = \nu(A)^{-1}\mu_A$, $\mu_2 = (1 - \nu(A))^{-1}(\mu - \mu_A)$. Then $\mu = \nu(A)\mu_1 + (1 - \nu(A))\mu_2$ and, by Lemma 2.1 of [3], $\|\mu^n * (\mu_1 - \mu_2)\| \to 0$. Now

$$\mu_1 - \mu_2 = \nu(A)^{-1}(1 - \nu(A))^{-1}(\mu_A - \nu(A)\mu),$$

hence $\|\mu^n * (\mu_A - \nu(A)\mu)\| \to 0$. Clearly this remains true if $\nu(A) = 0$ or $\nu(A) = 1$ too. Thus, $(\mu_A - \nu(A)\mu) * \eta \in I$ whenever $\eta \ll m$. \Box

Theorem 1. Let $\gamma \in \Gamma$; the following conditions are equivalent: (a) γ vanishes on J. (b) $(d\mu/d\nu)(x) = (x, \gamma)\hat{\mu}(\gamma)$ a.e. ν . (c) $|\hat{\mu}(\gamma)| = 1$. (d) γ vanishes on I.

Copyright © 1975, American Mathematical Society

Received by the editors August 2, 1973 and, in revised form, November 20, 1973. AMS (MOS) subject classifications (1970). Primary 43A25, 60J15.

¹ The research reported in this note was supported in part by NSF grant GP28933.

Proof. (a) \Rightarrow (b). If $(\hat{\mu}_A(\gamma) - \nu(A)\hat{\mu}(\gamma)) \cdot \hat{\eta}(\gamma) = 0$ for every $\eta \ll m$ and every set A, then $\int_A (-x, \gamma) \mu(dx) = \int_A \hat{\mu}(\gamma) \nu(dx)$. Now $\int_A (-x, \gamma) \mu(dx) = \int_A (-x, \gamma) (d\mu/d\nu)(x)\nu(dx)$ from which (b) follows.

(b) \Rightarrow (c). Note that $|(x, \gamma)| = 1$ and $|(d\mu/d\nu)(x)| = 1$ a.e. ν . (c) \Rightarrow (d). If $||\mu^n * \tau|| \rightarrow 0$ where $|\hat{\mu}(\gamma)| = 1$, then $|\hat{\tau}(\gamma)| = |\mu^n * \tau(\gamma)| = 0$. (d) \Rightarrow (a). Follows from Lemma 1. \Box

Definition 3. $E = E(\mu) = \{\gamma: \gamma \in \Gamma \text{ and } \hat{\tau}(\gamma) = 0 \text{ for every } \tau \in I\} = \{\gamma: \gamma \in \Gamma \text{ and } \hat{\tau}(\gamma) = 0 \text{ for every } \tau \in I\}.$

Let us use now the notion of a set of spectral synthesis, see 15, 7.1.4, p. 158]. Note that by (c) of Theorem 1, E is a closed set. Now if $\gamma_0 \in E$ and $\gamma_0 + \gamma \in E$ it follows from (b) of Theorem 1 that

$$(x, \gamma_0)\hat{\mu}(\gamma_0) = (x, \gamma + \gamma_0)\hat{\mu}(\gamma + \gamma_0)$$
 a.e. ν

hence $(x, y) = \text{const. a.e. } \nu$. Conversely, if $y_0 \in E$ and (x, y) = const. a.e. ν then

$$\hat{\mu}(\gamma_0 + \gamma) = \int (-x, \gamma_0)(-x, \gamma)\mu(dx) = \text{const. } \hat{\mu}(\gamma_0)$$

and $\gamma_0 + \gamma \in E$ too.

Thus E is a coset of Γ and by [5, 7.5.2, part (d), p. 170] E is a set of spectral synthesis. Thus

Theorem 2.
$$I = J = \{\tau: \tau \ll m \text{ and } \hat{\tau}(\gamma) = 0 \text{ for all } \gamma \in E\}.$$

Remark. From part (b) of Theorem 1 follows that if $d\mu/d\nu$ is not a multiple of (x, γ) , for some γ , a.e. ν then $J = I = L_1(G)$.

Theorem 3. If ν is not supported on a set of the form $\{x: (x, \gamma_0) = \text{const.}\}$ for some $\gamma_0 \in \Gamma$, then E is either empty or contains one point.

Proof. Let $\gamma_1, \gamma_2 \in E$; then $(x, \gamma_1) = \hat{\mu}(\gamma_1)$ and $(x, \gamma_2) = \hat{\mu}(\gamma_2)$ a.e. ν . Hence $(x, \gamma_1 - \gamma_2) = \text{const.}$ a.e. ν which contradicts our assumption. \Box

Remark. Assume the contradiction of Theorem 3 and $d\mu(x)/d\nu = c(x, \gamma)$ a.e. ν . Then $\hat{\mu}(\gamma) = c$ and $\gamma \in E$.

Corollary 1. If $\mu \ge 0$ and the support of μ is not contained in any set of the form $\{x: (x, \gamma_0) = \text{const.}\}$, then $\|\mu^n * \tau\| \to 0$, as $n \to \infty$, whenever $\tau \ll m$ and $\tau(G) = 0$.

Proof. If $\mu \ge 0$ then $0 \in E$ (0 is the character which is identically equal to 1). Thus $E = \{0\}$ by Theorem 3. \Box

Remark. For $G = R^1$ this corollary was proved in [4, Theorem 7, part (b), p. 11], by a probabilistic argument.

The following corollary was suggested to us by John Baxter.

Corollary 2. If the support of μ is not contained in any set of the form $\{x: (x, \gamma) = \text{const.}\}$ and f is a measurable bounded function such that $\mu * f = f$ a.e. m, then f = const. a.e. m.

Proof. By Corollary 1 if $\tau \ll m$ and $\tau(G) = 0$, then

$$|\tau * f| = |(\tau * \mu^n) * f| \le ||f||_{\infty} ||\tau * \mu^n||_1 \to 0.$$

Thus f = const. a.e. m. \Box

Remarks. Corollary 2 is proved in [2, Chapter XI, §2, p. 351]. It is proved also in [1] for non-Abelian groups but under the restrictive assumption that μ induces a conservative random walk. Also in [1] it is shown that this corollary implies that the only bounded measure τ , with $\tau * \mu = \tau$ is a multiple of Haar measure if G is compact and is zero otherwise. Finally note that Corollary 2 is a generalization of the classical result that a bounded harmonic function is a constant: take $G = R^n$ and μ a uniform distribution on a sphere around the origin.

BIBLIOGRAPHY

1. A. Brunel, P. Crepel, Y. Guivarc'h and M. Keane, Marches aléatoires recurrentes sur les groupes localement compacts, C. R. Acad. Sci. Paris 275 (1972), 1359-1361.

2. W. Feller, An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR 35 #1048.

3. S. R. Foguel and B. Weiss, On convex power series of conservative Markov operator, Proc. Amer. Math. Soc. 38 (1973), 325-330.

4. D. S. Ornstein, Random walks. I, Trans. Amer. Math. Soc. 138 (1969), 1-43. MR 38 #6675.

5. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM, JERU-SALEM, ISRAEL