ON TYPE-SETS OF TORSION-FREE ABELIAN GROUPS OF RANK 2

RYUICHI ITO

ABSTRACT. We prove existence of a torsion-free abelian group with a prescribed type-set.

The existence of torsion-free abelian groups with prescribed type-set has been studied by Beaumont and Pierce [1] and Koehler [3], [4]. In this paper, we give an improved version of Theorem 7.10 in [1].

We refer the reader to [2] for the concepts of characteristic, type, and so forth. The type-set of a group G is denoted by T(G). As in [1], we say that a torsion-free abelian group G is completely anisotropic if $\tau(x) \neq \tau(y)$ whenever x and y are linearly independent elements of G and $\tau(x)$ denotes the type of the characteristic of x in G. We say that a set of characteristics χ_0, χ_1, \cdots is relatively disjoint if $\chi_i > \chi_0$ for all $i \ge 1$ and if, for all primes p and all $i \ne j$, either $\chi_i(p) = \chi_0(p)$ or $\chi_j(p) = \chi_0(p)$. A set of types $\{\tau_0, \tau_1, \cdots\}$ is relatively disjoint if it can be represented by a relatively disjoint set of characteristics. (This is stronger than merely requiring that $\tau_0 = \tau_i \cap \tau_i$ for $i \ne j$.)

Theorem 1. Let $T = {\tau_0, \tau_1, \dots}$ be a countably infinite relatively disjoint set of types. Then there exists a completely anisotropic rank two torsion-free abelian group A such that T(A) = T.

Proof. It clearly suffices to prove the case $\tau_0 = T(Z)$, where Z is the group of integers. We may then choose characteristics χ_i representing the τ_i in such a way that for all primes p, $\chi_0(p) = 0$ and for all $i \neq j$, either $\chi_i(p) = 0$ or $\chi_j(p) = 0$. Let $\pi_n = \{p | \chi_n(p) > 0\}$ for $n \ge 1$, and let $p_n = \min \pi_n$. Thus $\pi_i \cap \pi_j = \emptyset$ for $i \neq j$. We may suppose that the χ_n have been numbered in such a way as to satisfy the following:

(*) For all
$$n, p_n < p_{n+1}$$
.

Copyright © 1975, American Mathematical Society

Received by the editors November 1, 1973 and, in revised form, January 15, 1974. AMS (MOS) subject classifications (1970). Primary 20K15.

Key words and phrases. Type, type-set, characteristic, completely anisotropic, relatively disjoint.

RYUICHI ITO

For each $n \ge 0$, choose a rank one group G_n with type τ_n and let x_n be an element of characteristic χ_n in G_n . Let $G = \bigoplus_{n \ge 0} G_n$.

We now arrange the set of elements with integer coefficients $\{ax_0 + bx_1 | b > 0, (a, b) = 1\}$ into a sequence $\{y_n\}$ in such a way that $y_1 = x_1$ and

(**) If
$$y_n = a_n x_0 + b_n x_1$$
, then $\max\{|a_n|, b_n\} \le n$.

From (*) and (**) we get

(***) For all
$$p \in \pi_n$$
, max{ $|a_n|$, b_n } < p .

Now let $H = \bigoplus_{n \ge 2} \langle y_n - x_n \rangle$. We will now show that G/H is the desired group A. It is clear that G/H has torsion-free rank 2, since the cosets corresponding to x_0 and x_1 are a maximal linearly independent set. We prove next that H is pure in G (i.e. G/H is torsion free). Let $w = \sum_{j\ge 2} e_j(y_j - x_j)$ be any element of H, where the e_j are integers. Since the y_j are linear combinations of x_0 and x_1 , it is clear that if $p \notin \bigcup_{n\ge 2} \pi_n$, then $w \in pG$ only if $p|e_j$ for all j. On the other hand, if $w \in pG$ and $p \in \pi_n$ for some $n \ge 2$, we still have $p|e_j$ for $j \ne n$, since $\pi_j \cap \pi_n = \emptyset$. Writing $y_j = a_j x_0 + b_j x_1$, we see that the component of w in G_1 is $\sum b_j e_j x_1$. Since $b_p(x_1) = 0$ and $p \ne b_n$ by (***), we also see that $p|e_n$, so again $w \in pH$.

We now denote by \overline{y}_0 the coset containing x_0 , and by \overline{y}_n the coset containing $y_n = a_n x_0 + b_n x_1$, and show that $r(\overline{y}_n) = r(x_n)$. It suffices, of course, to show that $r(\overline{y}_n) \leq r(x_n)$. For n = 0 or n = 1, this is easy. For if $h_p(\overline{y}_n) \geq s > h_p(x_n)$ for some p, then there must exist c_i such that $h_p(x_n + \sum_{i \geq 2} c_i(y_i - x_i)) \geq s$. Then clearly p^s divides all c_i (except for at most one c_j , if $p \in \pi_j$ for some $j \geq 2$). But then comparing the coefficients of x_1 (in case n = 0) or x_0 (in case n = 1), using (***) shows us that $p^s|c_i$ as well, and this yields a contradiction.

For $n \ge 2$, we consider two classes of primes.

1. If $p \notin \bigcup_{i \neq n} \pi_i$, we claim that $h_p(\overline{y}_n) = h_p(x_n)$. Suppose there exist coefficients c_i so that

$$y_{n} + \sum_{i \geq 2} c_{i}(y_{i} - x_{i}) = (1 + c_{n})y_{n} - c_{n}x_{n} + \sum_{i \neq n} c_{i}(y_{i} - x_{i})$$

has height greater than $h_p(x_n)$. Checking the coefficients of x_i for $i \ge 2$, we see that $p|c_i$ for all *i*; this fails because, by (***), $h_p(y_n) = 0$.

2. Consider those p such that $p \in \pi_j$ for some $j \neq n$. We claim that $h_p(\overline{y}_n) \neq \infty$ and for almost all such p, $h_p(\overline{y}_n) = 0$. Now

(1)
$$h_p(\overline{y}_n) \leq h_p(b_j\overline{y}_n) = h_p(b_n\overline{y}_j + (a_nb_j - a_jb_n)\overline{x}_0).$$

Since $h_p(\overline{y}_j) \ge h_p(x_j)$ and $h_p(\overline{x}_0) = 0$ and $a_n b_j - a_j b_n \ne 0$, this means that $h_p(\overline{y}_n) \ne \infty$ if $h_p(x_j) = \infty$. On the other hand if $h_p(x_j) < \infty$ and $h_p(\overline{y}_n) = \infty$, then there must exist c_i so that $h_p(y_n + \sum_{i \ge 2} c_i(y_i - x_i)) > h_p(x_j)$. But in this case $p|c_i$ for all *i* and we get a contradiction. Thus $h_p(\overline{y}_n) \ne \infty$.

It remains to show that there are at most a finite number of pairs (j, p) such that $j \neq n, p \in \pi_j$, and $h_p(\overline{y}_n) > 0$. Now since $h_p(b_n\overline{y}_j) > 0$ and $h_p(\overline{x}_0) = 0$, we see from (1) that $h_p(\overline{y}_n) = 0$ whenever $p \neq (a_n b_j - a_j b_n)$. Now let $p_j = \min \pi_j$. By (*) and a well-known theorem in number theory (for example [5, p. 10]), $\lim_{j\to\infty} j/p_j = 0$, so that, by (**), $\lim a_j/p_j = \lim b_j/p_j = 0$. Thus for sufficiently large j, $|a_nb_j - a_jb_n| < p_j \leq p$ for all $p \in \pi_j$. Therefore there are at most finitely many pairs (j, p) so that $p|(a_nb_j - a_jb_n)$. This completes the proof that $\tau(\overline{y}_n) = \tau(x_n)$ for all n. Since every element of G/H is a rational multiple of some \overline{y}_n , the theorem is proved.

Considering the proof of Theorem 1, we can easily see that the following theorem also holds.

Theorem 2. Let $T' = \{\tau_1, \tau_2, \dots\}$ be a type-set such that τ_0 is excluded from the type-set T of Theorem 1. Then there exists a completely anisotropic torsion-free abelian group A' of rank 2 such that T(A') = T'.

Remark. Let p_n denote the *n*th prime from the smallest. Let $r_n = p_{2n-1}$, and $s_n = p_{2n}$. Let $\Pi_1 = \{r_n\}$ and $\Pi_2 = \{s_n\}$. Let $\chi_0, \chi_1, \lambda_i$, and μ_i be the characteristics such that:

$$\begin{split} \chi_{0}(p) &= 0 & \text{for every prime } p, \\ \chi_{1}(p) &= 0 & \text{for } p \in \Pi_{1}, \quad \chi_{1}(p) = 1 & \text{for } p \in \Pi_{2}, \\ \lambda_{i}(r_{i}) &= \infty, \quad \lambda_{i}(p) = 0 & \text{for } p \neq r_{i}, \\ \mu_{j}(s_{j}) &= \infty, \quad \mu_{j}(p) = 0 & \text{for } p \neq s_{j}, \end{split}$$
 (*i*, *j* = 1, 2, 3, ...).

Let $T = \{[\chi_0], [\chi_1], [\lambda_1], [\lambda_2], \dots, [\mu_1], [\mu_2], \dots\}$, where $[\chi]$ denotes the type corresponding to the characteristic χ . Then T is neither relatively disjoint nor satisfies the condition of Theorem 2. But we can construct a completely anisotropic abelian group A of rank 2 such that T(A) = T.

The type-set of Example on p. 190 in [3] cannot be realized as type-set of any completely anisotropic group of rank 2.

Acknowledgement. The author wishes to thank the referee for his valuable suggestions.

RYUICHI ITO

REFERENCES

1. R. A. Beaumont and R. S. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc. No. 38 (1961). MR 24 #A162.

2. L. Fuchs, Infinite abelian groups. Vols. I, II, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970, 1973. MR 41 #333.

3. J. Koehler, Some torsion-free rank two groups, Acta Sci. Math. (Szeged) 25 (1964), 18 -190. MR 30 #152.

4. _____, The type set of a torsion-free group of finite rank, Illinois J. Math. 9 (1965), 66-86. MR 30 #2068.

5. A. E. Ingham, The distribution of prime numbers, Stechert-Hafner Service Agency, 1964.

DEPARTMENT OF MATHEMATICS, WASEDA UNIVERSITY, TOKYO, JAPAN