A TWO-CARDINAL THEOREM

SAHARON SHELAH ${ }^{1}$

Abstract

We prove the following theorem and deal with some related questions: If for all $n<\omega, T$ has a model M such that $n^{n} \leq\left|Q^{M}\right|^{n}$ $\leq\left|P^{M}\right|<X_{0}$ then for all λ, μ such that $|T| \leq \mu \leq \lambda<\operatorname{Ded}^{*}(\mu)$ (e.g. $\mu=\mathcal{K}_{0}, \lambda=2^{\prime}$), T has a model of type (λ, μ), i.e. $\left|Q^{M}\right|=\mu,\left|P^{M}\right|=\lambda$.

1. Introduction. We shall deal with first order theories T; for simplicity we let T be countable, except in $\oint 3$. It is well known that if T has a model of type ($I_{\omega}, \boldsymbol{K}_{0}$) (i.e. a model M of power I_{ω} with $\left|Q^{M}\right|=\boldsymbol{K}_{0}$), then for every $\lambda>\kappa_{0} T$ has a model of type $\left(\lambda, \kappa_{0}\right)$. This is designated by $\left(\beth_{\omega}, \kappa_{0}\right) \rightarrow\left(\lambda, \boldsymbol{\kappa}_{0}\right)$. One may ask the question: For what λ does $\left(\boldsymbol{\kappa}_{\omega}, \boldsymbol{\kappa}_{0}\right) \rightarrow$ $\left(\lambda, \kappa_{0}\right)$? In particular does $\left(\boldsymbol{\kappa}_{\omega}, \kappa_{0}\right) \rightarrow\left(2^{\boldsymbol{N}_{0}}, \boldsymbol{\kappa}_{0}\right)$? It is of course impossible to ask for more since there is a sentence having a model of type (λ, μ) iff $\boldsymbol{x}_{0} \leq \mu \leq \lambda \leq 2^{\mu}$ (or iff $x_{0} \leq \mu \leq \lambda<\operatorname{Ded}^{*} \mu$).

We give a combinatorial lemma which implies $\left(\boldsymbol{N}_{\omega}, \kappa_{0}\right) \rightarrow\left(2^{\boldsymbol{N}_{0}}, \kappa_{0}\right)$ and seems to be equivalent to it assuming $M A+2{ }^{K_{0}}>\kappa_{\omega}$. This Lemma still remains an open problem. We finally prove a related two-cardinal theorem (Theorem 1), of interest in its own right, which was stated in the abstract.

2. Notation.

Definition 1. A tree is a partially ordered set ($X,<$) such that for each node $x \in X$ the set of predecessors of x is well ordered by <. A branch is a maximal chain. The height of a branch is its order type (always an ordinal).

Definition 2. Let μ be a cardinal. $\operatorname{Ded}^{*}(\mu)$ is the first power λ such that there is no tree with $\leq \mu$ nodes and $\geq \lambda$ branches of the same height. (In this definition we may assume that all trees are subtrees of ($<\mu^{+}{ }_{2},<$), the tree of all $0-1$ sequences of length $<\mu^{+}$, ordered by continuation.)

[^0]For example, $\operatorname{Ded}^{*}\left(\kappa_{0}\right)=\left(2^{K_{0}}\right)^{+}$and, in general, $\operatorname{Ded}^{*}(\mu) \leq\left(2^{\mu}\right)^{+}$. See Baumgartner [1] for results about Ded* and Ded (which we shall not even define here); in particular, it is consistent that $\operatorname{Ded}^{*}\left(\kappa_{1}\right)<\left(2^{N_{1}}\right)^{+}$。

Let Q and P be two unary predicates and Q^{M}, P^{M} their interpretations in the model M. We vary from standard notation by letting (λ, μ)-model mean a model M with $\left|P^{M}\right|=\lambda,\left|Q^{M}\right|=\mu$.

Our main theorem is thus denoted by $\left\{\left(m_{i}, n_{i}\right): i<\omega\right\} \rightarrow(\lambda, \mu)$ for $\boldsymbol{x}_{0} \leq$ $\mu \leq \lambda<\operatorname{Ded}^{*}(\mu), x_{0}>m_{i}>n_{i}^{i} \geq i^{i}$.
η, ν will denote sequences of zeroes and ones; ${ }^{\alpha} 2$ the set of all $0-1$ sequences of length $\alpha ; l(\eta)$ the length of $\eta ; \eta^{\wedge} \nu$ the concatenation of η and ν; and $\eta \mid \beta$ the initial subsequence of η of length β. Let ${ }^{<\alpha} 2=$ $\bigcup_{\beta<a}{ }^{\beta_{2}}$.
3. A two-cardinal theorem. The standard way of proving two-cardinal theorems $\left(\lambda_{0}, \mu_{0}\right) \rightarrow\left(\lambda_{1}, \mu_{1}\right)$ is to find a set of sentences Γ such that
(i) if T has a model of type $\left(\lambda_{0}, \mu_{0}\right)$ then $T \cup \Gamma$ is consistent;
(ii) if $T \cup \Gamma$ is consistent then T has a model of type $\left(\lambda_{1}, \mu_{1}\right)$.

Assume w.loo.g. that T is a theory in a language L, and has Skolem functions. We use this method to prove

Theorem l. If for all $n<\omega$ every finite subset of T has a model M such that $n^{n} \leq\left|Q^{M}\right|^{n} \leq\left|P^{M}\right|<\kappa_{0}$, then for all λ, μ such that $|T| \leq \mu \leq \lambda<$ $\operatorname{Ded}^{*}(\mu), T$ has a model of type (λ, μ).

Notice that for $\mu=\kappa_{0}$ the conclusion is that T has a model of type ($2^{K_{0}}, \kappa_{0}$) (when T is countable).

Definition 3. Let $\eta_{i}, \nu_{i} \epsilon^{<\alpha} 2$ for $i=1, \cdots, n .\left\langle\eta_{1}, \cdots, \eta_{n}\right\rangle$ and $\left\langle\nu_{1}, \cdots, \nu_{n}\right\rangle$ are similar over β if for all $i=1, \cdots, n, l\left(\eta_{i}\right), l\left(\nu_{i}\right) \geq \beta$, $\eta_{i}\left|\beta=\nu_{i}\right| \beta$, and for all $i, j, 1 \leq i<j \leq n, \eta_{i}\left|\beta \neq \eta_{j}\right| \beta$ (and thus $\nu_{i}\left|\beta \neq \nu_{j}\right| \beta$).

Definition 4. Let D be a set of $0-1$ sequences. Define

$$
\begin{aligned}
& \Gamma_{L}(D)=\left\{P\left(y_{\eta}\right): \eta \in D\right\} \cup\left\{y_{\eta} \neq y_{\nu}: \eta \neq \nu \in D\right\} \\
& \cup\left\{z_{1}=\tau\left(y_{\eta_{1}}^{-}, \cdots, y_{\eta_{n}}\right) \wedge z_{2}=\tau\left(y_{\nu_{1}}, \cdots, y_{\nu_{n}}\right) \wedge Q\left(z_{1}\right)\right. \\
& \\
& \\
& \rightarrow z_{1}=z_{2}: \tau \text { is a term in } L, \eta_{i}, \nu_{i} \in D \text { and } \\
& \\
& \left.\quad\left\langle\eta_{1}, \cdots, \eta_{n}\right\rangle \text { and }\left\langle\nu_{1}, \cdots, \nu_{n}\right\rangle \text { are similar over some } \beta\right\} .
\end{aligned}
$$

Now, by way of fulfilling part (ii) above it is easy to see
Lemma 1. If $T \cup \Gamma_{L}\left(2^{\omega}\right)$ is consistent and $|T| \leq \mu \leq \lambda<\operatorname{Ded}^{*}(\mu)$, then
T has a model of type $\left(\lambda, \mu_{1}\right)$, for some $\mu_{1} \leq \mu$. In particular, if $T \cup \Gamma_{L}\left(2^{\omega}\right)$ is consistent and M is the Skolem closure of $\left\{y_{\eta}: \eta \in 2^{\omega}\right\}$, then M is of type ($2^{N_{0}}, \mathrm{~K}_{0}$).

Let us turn now to part (i). We shall list some conditions which are sufficient for proving the consistency of $T \cup \Gamma_{L}\left(2^{\omega}\right)$.

By the compactness theorem, it is enough to show the consistency of $T^{\prime} \cup \Gamma_{L}^{\prime}\left({ }^{n} 2\right)$ (where the prime on $\Gamma_{L}(D)$ indicates that in the definition of $\Gamma_{L}(D) \tau$ ranges over a finite set of terms of L, say $\left\{\tau_{0}, \cdots, \tau_{n_{0}}\right\}$, each having $\leq n_{0}$ variables, and T^{\prime} is a finite subset of T). This holds because we can replace T by $T_{1}=T \cup\left\{Q\left(c_{i}\right): i<\mu\right\} \cup\left\{c_{i} \neq c_{j}: i<j<\mu\right\}$, the c_{i}-new individual constants. T_{1} satisfies the hypothesis of Theorem 1 , and in every model M of it $\left|Q^{M}\right| \geq \mu$. So by the lemma this is sufficient. This must be shown for all $n, n_{0}<\omega$.

Definition 5. Let M be a model, A a subset of $M, \bar{b}, \bar{c} \in M$. Define $\bar{b} \sim \bar{c}(\bmod A)$ if for all $i \leq n_{0}$ and for any presentation of $\tau_{i}, \tau_{i}(\bar{x}, \bar{y})$ (i.e., ordering and identification of the variables of τ_{i}), we have for all $\bar{a} \in A$

$$
\tau_{i}(\bar{c}, \bar{a}) \in Q^{M} \vee \tau_{i}(\bar{b}, \bar{a}) \in Q^{M} \Rightarrow \tau_{i}(\bar{c}, \bar{a})=\tau_{i}(\bar{b}, \bar{a})
$$

If \bar{b} is a single-element sequence we simply write b.
So clearly if the number of such presentations is n_{1} (so n_{1} depends on n_{0} only), then this equivalence relation has $\leq\left(\left|Q^{M}\right|+1\right)^{k}$ equivalence classes, where $k=|A|^{n_{0}} n_{1}$.

Claim 1. Let D be a set of $0-1$ sequences of length n and $n-1$ such that no two sequences are comparable (i.e. no one is an initial segment of the other). Assume that the assignment $\left\{y_{\eta} \rightarrow a_{\eta}: \eta \in D\right\}$ satisfies $\Gamma_{L}^{\prime}(D)$. Let $\nu \in D$ be of length $n-1$ and let $d \in P^{M}-\left\{a_{\eta}: \eta \in D\right\}$ be such that $d \sim a_{\nu}\left(\bmod \left\{a_{\eta}: \eta \neq \nu, \eta \in\right.\right.$ $D\}$). Let $a_{\nu^{\wedge}(0\rangle}=a_{\nu^{\prime}} a_{\nu^{\wedge}(1)}=d$, and $\left.D^{\prime}=(D-\{\nu\}) \cup \nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle\right\}$. Then the assignment $\left\{y_{\eta} \rightarrow a_{\eta}: \eta \in D^{\prime}\right\}$ satisfies $\Gamma_{L}^{\prime}\left(D^{\prime}\right)$.

Proof. Let $\left\langle u_{1}, \cdots, u_{n}\right\rangle,\left\langle v_{1}, \cdots, v_{n}\right\rangle$ be similar over some $\beta(\leq n)$, $u_{i}, v_{i} \in D^{\prime}$. We must show

$$
z_{1}=\tau\left(a_{u_{1}}, \cdots, a_{u_{n}}\right) \wedge z_{2}=\tau\left(a_{v_{1}}, \cdots, a_{v_{n}}\right) \wedge Q\left(z_{1}\right) \rightarrow z_{1}=z_{2}
$$

i.e., $\left\langle a_{u_{1}}, \cdots, a_{u_{n}}\right\rangle \sim\left\langle a_{v_{1}}, \cdots, a_{v_{n}}\right\rangle(\bmod \varnothing)$.

If $\beta=n$, we have $u_{i}=v_{i}$ and the result is trivial. If $\beta \leq n-1$, then by the definition of similarity, at most one of the v_{i}^{\prime} s can be $\nu^{\wedge}\langle 0\rangle$ or $\nu^{\wedge}\langle 1\rangle$; likewise for the u_{i}^{\prime} 's. If none of the u_{i}^{\prime} 's or v_{i}^{\prime} 's are $\nu^{\wedge}\langle 0\rangle$ or $\nu^{\wedge}\langle 1\rangle$, then the result holds by our hypothesis. Thus without loss of generality we may
assume $v_{1} \in\left\{\nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle\right\}$. Clearly for $i \neq 1, u_{i}, v_{i} \notin\left\{\nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle\right\}$. Now $a_{\nu_{1}} \sim a_{\nu}\left(\bmod \left\{a_{\eta}: \eta \neq \nu, \eta \in D\right\}\right)$, since either $a_{\nu_{1}}=a_{\nu}$ or $a_{\nu_{1}}=d$. Thus $\left\langle a_{v_{1}}, a_{v_{2}}, \cdots, a_{v_{n}}\right\rangle \sim\left\langle a_{\nu}, a_{v_{2}}, \cdots, a_{v_{n}}\right\rangle(\bmod \varnothing)$.

Case 1. $u_{1} \in\left\{\nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle\right\}$. Then $\left\langle a_{u_{1}}, a_{u_{2}}, \cdots, a_{u_{n}}\right\rangle \sim$ $\left\langle a_{\nu} a_{u_{2}}, \cdots, a_{u_{n}}\right\rangle(\bmod \varnothing)$. Clearly $\left\langle\nu, u_{2}, \cdots, u_{n}\right\rangle$ and $\left\langle\nu, \nu_{2}, \cdots, v_{n}\right\rangle$ are similar over the above β. And so by the assumption on $\Gamma_{L}^{\prime}(D)$, $\left\langle a_{\nu^{\prime}} a_{u_{2}}, \cdots, a_{u_{n}}\right\rangle \sim\left\langle a_{\nu^{\prime}} a_{\nu_{2}}, \cdots, a_{v_{n}}\right\rangle(\bmod \varnothing)$. Thus we have $\left\langle a_{u_{1}}, a_{u_{2}}, \cdots, a_{u_{n}}\right\rangle \sim\left\langle a_{v_{1}}, a_{v_{2}}, \cdots, a_{v_{n}}\right\rangle(\bmod \varnothing)$.

Case 2. $u_{1} \notin\left\{\nu^{\wedge}\langle 0\rangle, \nu^{\wedge}\langle 1\rangle\right\}$. Then $\left\langle\nu, v_{2}, \cdots, v_{n}\right\rangle,\left\langle v_{1}, \cdots, v_{n}\right\rangle$, $\left\langle u_{1}, \cdots, u_{n}\right\rangle$ are all similar over β, so it follows that

$$
\left\langle a_{u_{1}}, \cdots, a_{u_{n}}\right\rangle \sim\left\langle a_{\nu}, a_{v_{2}}, \cdots, a_{v_{n}}\right\rangle \sim\left\langle a_{v_{1}}, a_{v_{2}}, \cdots, a_{v_{n}}\right\rangle(\bmod \varnothing) .
$$

Claim 2. In order to show the consistency of $T^{\prime} \cup \Gamma_{L}^{\prime}\left({ }^{n} 2\right)$ for all $n<\omega$ it is sufficient to prove:

For all $m<\omega$ there is a model M of T^{\prime} and a sequence of sets $X_{1} \subset$ $X_{2} \subset \cdots \subset X_{m} \subset P^{M}$ such that for all $i=1, \cdots, m-1$ and all distinct a_{1}, $\cdots, a_{m}, a_{m+1} \in X_{i}$, there is $a_{m+1}^{\prime} \in X_{i+1}, a_{m+1}^{\prime} \notin\left\{a_{1}, \cdots, a_{m+1}\right\}$, such that $a_{m+1}^{\prime} \sim a_{m+1}\left(\bmod \left\{a_{1}, \cdots, a_{m}\right\}\right)$.

Proof. This is a corollary of the previous claim by repeated use of it.
Claim 3. Theorem 1 follows from the following combinatorial assertion:
(*) For all $m, k<\omega$ there is $l=l(k, m)<\omega$ such that for all $r<\omega$: if F is an m-place function on a set A of power $|A|=r^{l}$ whose range is subsets of A of power $\leq r$, then there is $B \subset A,|B|=r^{k}$, such that for all distinct $a_{1}, \cdots, a_{m+1} \in B, a_{m+1} \notin F\left(a_{1}, \cdots, a_{m}\right)$.

Proof. We will show that the condition of Claim 2 follows from (*) and the hypothesis of Theorem 1. Let $l(k, m)$ be as in (*). Define l_{i}, for $i=$ $1, \cdots, m-1$, as follows: $l_{1}=1, l_{i+1}=l\left(m, l_{i}\right)$. Choose a model M of T^{\prime} such that $\left|Q^{M}\right| \geq 2,\left|Q^{M}\right| \geq l_{m}, r=\left|Q^{M}\right|^{n_{2}}<\boldsymbol{N}_{0}$, where $n_{2}=2 m^{n_{0}} n_{n_{1}}$ and $\left|P^{M}\right| \geq r^{m}$. Let $X_{m}=P^{M}$. For $k=0, \cdots, m-1$ we will define X_{m-k} satisfying the hypothesis of Claim 2 and such that $\left|X_{m-k}\right| \geq r^{l_{m-k-1}}$. Suppose $X_{m-k_{0}}$ satisfying the hypothesis of induction has been found. Let F be the m-place function from $X_{m-k_{0}}$ into subsets of $X_{m-k_{0}}$ with less than r elements obtained by letting $F\left(a_{1}, \cdots, a_{m}\right)$ be a complete set of representatives of the equivalence relation $\sim \bmod \left\{a_{1}, \cdots, a_{m}\right\}$. (This
relation has at most $\left|Q^{M}\right|^{n}$ equivalence classes.) Now by (*) there is a set $B=X_{m-k_{0}-1}$ with at least $r^{l_{m-k}-1}$ elements such that if a_{1}, \cdots, $a_{m+1} \in X_{m-k_{0}-1}$ are distinct, then $a_{m+1} \notin F\left(a_{1}, \cdots, a_{m}\right)$, so a choice of a_{m+1}^{\prime} to satisfy the hypothesis of Claim 2 can be made from $F\left(a_{1}, \cdots, a_{m}\right)$.

Now to prove Theorem 1 we need only show
Claim 4. (*) holds.
Remark. Maybe this claim has already appeared in Erdös and Hajnal [3].

Proof. Let $\left\{y_{1}, \cdots, y_{r k}\right\}$ be random variables on A. What is the probability that $B=\left\{y_{1}, \cdots, y_{r k}\right\}$ will not fulfill the demands of (*)? It is \leq

$$
\begin{gathered}
\sum_{\substack{i_{1}, \cdots, i_{m+1} \leq r^{k} \\
\text { distinct }}}\left[\begin{array}{l}
\text { the probability that } y_{\sigma\left(i_{m+1}\right)} \in F\left(y_{\sigma\left(i_{1}\right)}, \cdots, y_{\sigma\left(i_{m}\right)}\right) \\
\text { for some permutation } \sigma \text { of } i_{1}, \cdots, i_{m+1}
\end{array}\right] \\
+\sum_{1 \leq i \neq j \leq r^{k}}\left[\begin{array}{l}
\text { the probability that } \\
y_{i}=y_{j}
\end{array}\right] \\
\leq\binom{ r^{k}}{m+1} \frac{(m+1)!r}{r^{l}}+\binom{r^{k}}{2} \frac{1}{r^{l} \leq \frac{r^{k m+k+1} f(m, k)}{r^{l}}} .
\end{gathered}
$$

where $f(m, k)$ is some function of m and k. So we certainly can choose $l=l(m, k)$ such that the whole expression is $\langle 1$ for all $r\rangle 1$. This means that it is possible to find a suitable set $\left\{y_{1}, \cdots, y_{r^{k}}\right\}$. Q.E.D.

This completes the proof of Theorem 1.
4. Remarks and generalizations. We now turn to the original problem of the consequences of T having a model of type ($\kappa_{\omega}, \aleph_{0}$). Consider the following combinatorial assertion.
$(* *)$ For all $k, m<\omega$ there is $l<\omega$ such that for any m-place function F from κ_{l} to the countable subsets of κ_{l}, there is $A \subseteq \kappa_{l},|A|=\kappa_{k}$, such that for all distinct $a_{1}, \cdots, a_{m}, a_{m+1} \in A, a_{m+1} \notin F\left(a_{1}, \cdots, a_{m}\right)$.

This is the problem mentioned in the introduction; the combinatorial lemma (**) is known to be true for $m=1$, but for $m>1$ and even $k=0$ it is still an open question. See Hajnal [4].

Theorem 2. If $(* *)$ holds and T has a model of type $\left(\kappa_{\omega}, \aleph_{0}\right)$ then for all λ, μ such that $|T| \leq \mu \leq \lambda<\operatorname{Ded}^{*}(\mu), T$ has a model of type (λ, μ).

Proof. As in the proof of Theorem 1 it suffices to show that for all n $\Gamma_{L}^{\prime}\left({ }^{n} 2\right)$ is consistent. To see this let $l=l(k, m)$ be as in (**).

For all $i=1, \ldots, m-1$ define l_{i} as follows: $l_{1}=1, l_{i+1}=l\left(l_{i}, m\right)$. Now let M be a model of T of type $\left(\kappa_{\omega}, \kappa_{0}\right)$. For $i=1, \cdots, m$ we define $A_{i} \subset P^{M}$ by retrograde induction, such that $\left|A_{i}\right|=\kappa_{l_{i}}$: Choose A_{m} to be any subset of P^{M} of power $\aleph_{l_{m}}$. Now assume that A_{i+1}^{i} is defined and for all $a_{1}, \cdots, a_{m} \in A_{i+1}$ let $F\left(a_{1}^{m}, \cdots, a_{m}\right)$ be a set of representatives in A_{i+1} of each equivalence class of $\sim\left(\bmod \left\{a_{1}, \cdots, a_{m}\right\}\right)$. It is not hard to see that there are $\leq \kappa_{0}$ such classes; so $\left|F\left(a_{1}, \cdots, \dot{a}_{m}\right)\right| \leq \kappa_{0}$, and by (**) there is $A_{i} \subseteq A_{i+1},\left|A_{i}\right|=\kappa_{l_{i}}$, such that for all distinct $a_{1}, \ldots, a_{m}, a_{m+1} \epsilon$ $A_{i}, a_{m+1} \notin F\left(a_{1}, \cdots, a_{m}\right)$. The sequence A_{1}, \cdots, A_{m} satisfies the requirements of the X_{i} in Claim 2, and so $T \cup \Gamma_{L}^{\prime}\left({ }^{n} 2\right)$ is consistent. Q.E.D.

We may be interested in other theorems of the form: $\left\{\left(m_{i}, n_{i}\right): i<\omega\right\} \rightarrow$ (λ, μ). Vaught's and Chang's two-cardinal theorems (see e.g. [2]) can easily be generalized to this case, but give less than our result (only when $\lambda \leq \mu^{+}$, $\left.\mu=\Sigma_{\kappa<\lambda} \mu^{\kappa}\right)$; Vaught's two cardinal theorem for cardinals far apart generalizes easily to finite hypothesis (using Ramsey's theorem instead of the Erdös-Rado partition theorem) and it cannot be improved. The following remains open (there are, of course, many others):

Question 1. Is our result best possible? That is, does there exist a sentence for which every n has a model $M, \kappa_{0}>\left|P^{M}\right|>\left|Q^{M}\right|^{n},\left|Q^{M}\right| \geq n$, but does not have a $\left(2^{\mu}, \mu\right)$-model for some μ, and even: has a (λ, μ)-model iff $\mu \leq \lambda<\operatorname{Ded}^{*}(\mu)$ (assuming for some $\mu, \operatorname{Ded}^{*}(\mu) \leq 2^{\mu}$).

Conjecture 2. $\left\{\left(m_{i}, n_{i}, k_{i}\right): i<\omega\right\} \rightarrow(\lambda, \mu, \kappa)$ when $m_{i} \geq n_{i}^{i}, n_{i} \geq k_{i}^{i}, k_{i}$ $\geq i, \kappa \leq \mu \leq \lambda<\operatorname{Ded}^{*} \kappa$.

Conjecture 3. $\left\{\left(2^{n_{i}}, n_{i}\right): i<\omega\right\} \rightarrow\left(2^{\mu}, \mu\right)\left[n_{i} \geq i\right]$.
The following remarks on the properties of $\Gamma_{L}(D)$ may be useful:
If in Definition 4, we demand only that $\left.k_{i, j}=\min \left\{l: \eta_{i}(l)\right\} \neq \eta_{j}(l)\right\}=$ $\min \left\{l: \nu_{i}(l) \neq \nu_{j}(l)\right\}$, and $\eta_{l}\left(k_{i, j}\right)=\nu_{l}\left(k_{i, j}\right), \eta_{j}\left(k_{i, j}\right)=\nu_{j}\left(k_{i, j}\right)$, we get that the consistency of $T \cup \Gamma_{L}\left({ }^{\omega} 2\right)$ implies T has a ($\left.2^{\lambda}, \lambda\right)$-model for every λ.

It can be shown that the existence of a model of T of type $\left(\lambda, \boldsymbol{x}_{0}\right)$, where λ is real-valued measurable, implies the consistency of $\Gamma_{L}\left({ }^{\omega} 2\right)$, even for sentences of $L_{\omega_{1}, \omega}$.

Papageorgiou shows that our method gives a positive answer to Conjecture 2 if we strengthen the assumption to: $k_{i} \geq i, n_{i} \geq\left(k_{i}\right)^{i}, m_{i} \geq\left(n_{i}\right)^{\left(n_{i}\right)^{i}}$; and that this generalizes to any finite number instead of three.

It is trivial that if T has a model $M,\left|P^{M}\right| \geq \boldsymbol{N}_{0}>\left|Q^{M}\right|$, then for every
$\lambda \geq|T|, T$ has a model of type $\left(\lambda,\left|Q^{M}\right|\right)$. Also if for every n, T has a model $M,\left|P^{M}\right| \geq \kappa_{0}>\left|Q^{M}\right| \geq n$, then for every $\lambda \geq \mu \geq|T|, T$ has a model of type (λ, μ). Hence in Theorem 1 we ignore those cases.

On n-cardinal the orems see Chang and Keisler [2]. Our result was announced in [5], and [$6, \S 0,(6)$ p. 2517 . In [$6, \S 0$] there is a discussion on n-cardinal problems.

Added in proof. The main conjecture has been proved and submitted to the Proceedings of the American Mathematical Society.

REFERENCES

1. J. Baumgartner, Almost-disjoint sets, the dense-set problem, and the partition calculus (to appear).
2. C. C. Chang and H. J. Keisler, Theory of models, North-Holland, Amsterdam, 1973.
3. P. Erdös and A. Hajnal, On the chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61-99. MR 33 \# 1247.
4. A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), 123-128.
5. S. Shelah, Various results in model theory, Notices Amer. Math. Soc. 19 (1972), A-764. Abstract \# 72T-E103.
6. ——, On models with power like orderings, J. Symbolic Logic 37 (1972), 247-267.
institute of mathematics, hebrew university, Jerusalem, israel

[^0]: Received by the editors December 27, 1972 and, in revised form, January 2, 1974. AMS (MOS) subject classifications (1970). Primary 02H05.
 Key words and phrases. Two-cardinal theorem, finite models.
 ${ }^{1}$ I would like to thank Leo Marcus for writing this paper (using notes of my lecture), to thank Papageorgiou for detecting an error, and to thank the referee for a suggestion of reorganization of the paper.

