A TWO-CARDINAL THEOREM

SAHARON SHELAH1

ABSTRACT. We prove the following theorem and deal with some related questions: If for all $n < \omega$, T has a model M such that $n^n \le |Q^M|^n \le |P^M| < \aleph_0$ then for all λ , μ such that $|T| \le \mu \le \lambda < \mathrm{Ded}^*(\mu)$ (e.g. $\mu = \aleph_0$, $\lambda = 2^{\aleph_0}$), T has a model of type (λ, μ) , i.e. $|Q^M| = \mu$, $|P^M| = \lambda$.

1. Introduction. We shall deal with first order theories T; for simplicity we let T be countable, except in § 3. It is well known that if T has a model of type $(\exists_{\omega}, \aleph_0)$ (i.e. a model M of power \exists_{ω} with $|Q^M| = \aleph_0$), then for every $\lambda > \aleph_0$ T has a model of type (λ, \aleph_0) . This is designated by $(\exists_{\omega}, \aleph_0) \rightarrow (\lambda, \aleph_0)$. One may ask the question: For what λ does $(\aleph_{\omega}, \aleph_0) \rightarrow (\lambda, \aleph_0)$? In particular does $(\aleph_{\omega}, \aleph_0) \rightarrow (2^{\aleph_0}, \aleph_0)$? It is of course impossible to ask for more since there is a sentence having a model of type (λ, μ) iff $\aleph_0 \leq \mu \leq \lambda \leq 2^{\mu}$ (or iff $\aleph_0 \leq \mu \leq \lambda \leq 2^{\mu}$).

We give a combinatorial lemma which implies $(\aleph_{\omega}, \aleph_0) \rightarrow (2^{\aleph_0}, \aleph_0)$ and seems to be equivalent to it assuming $MA + 2^{\aleph_0} > \aleph_{\omega}$. This Lemma still remains an open problem. We finally prove a related two-cardinal theorem (Theorem 1), of interest in its own right, which was stated in the abstract.

2. Notation.

Definition 1. A tree is a partially ordered set (X, <) such that for each node $x \in X$ the set of predecessors of x is well ordered by <. A branch is a maximal chain. The height of a branch is its order type (always an ordinal).

Definition 2. Let μ be a cardinal. Ded*(μ) is the first power λ such that there is no tree with $\leq \mu$ nodes and $\geq \lambda$ branches of the same height. (In this definition we may assume that all trees are subtrees of ($^{<\mu}$ ⁺2, <), the tree of all 0 - 1 sequences of length $< \mu$ ⁺, ordered by continuation.)

Received by the editors December 27, 1972 and, in revised form, January 2, 1974. AMS (MOS) subject classifications (1970). Primary 02H05.

Key words and phrases. Two-cardinal theorem, finite models.

¹I would like to thank Leo Marcus for writing this paper (using notes of my lecture), to thank Papageorgiou for detecting an error, and to thank the referee for a suggestion of reorganization of the paper.

For example, $\operatorname{Ded}^*(\aleph_0) = (2^{\aleph_0})^+$ and, in general, $\operatorname{Ded}^*(\mu) \leq (2^{\mu})^+$. See Baumgartner [1] for results about Ded^* and Ded (which we shall not even define here); in particular, it is consistent that $\operatorname{Ded}^*(\aleph_1) < (2^{\aleph_1})^+$.

Let Q and P be two unary predicates and Q^M , P^{M^*} their interpretations in the model M. We vary from standard notation by letting (λ, μ) -model mean a model M with $|P^M| = \lambda$, $|Q^M| = \mu$.

Our main theorem is thus denoted by $\{(m_i, n_i): i < \omega\} \rightarrow (\lambda, \mu)$ for $\aleph_0 \le \mu \le \lambda < \mathrm{Ded}^*(\mu), \ \aleph_0 > m_i > n_i^i \ge i^i$.

 η , ν will denote sequences of zeroes and ones; α^2 the set of all 0-1 sequences of length α ; $l(\eta)$ the length of η ; η^2 the concatenation of η and ν ; and $\eta | \beta$ the initial subsequence of η of length β . Let $\alpha^2 = \bigcup_{\beta < \alpha} \beta^2$.

- 3. A two-cardinal theorem. The standard way of proving two-cardinal theorems $(\lambda_0, \mu_0) \longrightarrow (\lambda_1, \mu_1)$ is to find a set of sentences Γ such that
 - (i) if T has a model of type (λ_0, μ_0) then $T \cup \Gamma$ is consistent;
 - (ii) if $T \cup \Gamma$ is consistent then T has a model of type (λ_1, μ_1) .

Assume w.l.o.g. that T is a theory in a language L, and has Skolem functions. We use this method to prove

Theorem 1. If for all $n < \omega$ every finite subset of T has a model M such that $n^n \leq |Q^M|^n \leq |P^M| < \aleph_0$, then for all λ , μ such that $|T| \leq \mu \leq \lambda < \mathrm{Ded}^*(\mu)$, T has a model of type (λ, μ) .

Notice that for $\mu=\aleph_0$ the conclusion is that T has a model of type $(2^{\aleph_0}, \aleph_0)$ (when T is countable).

Definition 3. Let η_i , $\nu_i \in ^{<\alpha} 2$ for $i=1,\cdots,n$. $\langle \eta_1,\cdots,\eta_n \rangle$ and $\langle \nu_1,\cdots,\nu_n \rangle$ are similar over β if for all $i=1,\cdots,n$, $l(\eta_i)$, $l(\nu_i) \geq \beta$, $\eta_i | \beta = \nu_i | \beta$, and for all i,j, $1 \leq i < j \leq n$, $\eta_i | \beta \neq \eta_i | \beta$ (and thus $\nu_i | \beta \neq \nu_i | \beta$).

Definition 4. Let D be a set of 0-1 sequences. Define

$$\begin{split} \Gamma_L(D) &= \{P(y_\eta)\colon \eta \in D\} \cup \{y_\eta \neq y_\nu\colon \eta \neq \nu \in D\} \\ & \cup \{z_1 = \tau(y_{\eta_1}^-, \, \cdots, \, y_{\eta_n}^-) \, \land \, z_2 = \tau(y_{\nu_1}^-, \, \cdots, \, y_{\nu_n}^-) \, \land \, Q(z_1^-) \\ & \longrightarrow z_1 = z_2\colon \tau \text{ is a term in } L, \, \eta_i, \, \nu_i \in D \text{ and} \\ & \langle \eta_1, \, \cdots, \, \eta_n \rangle \text{ and } \langle \nu_1, \, \cdots, \, \nu_n \rangle \text{ are similar over some } \beta\}. \end{split}$$

Now, by way of fulfilling part (ii) above it is easy to see

Lemma 1. If $T \cup \Gamma_I(2^{\omega})$ is consistent and $|T| \le \mu \le \lambda < \text{Ded}^*(\mu)$, then

T has a model of type (λ, μ_1) , for some $\mu_1 \leq \mu$. In particular, if $T \cup \Gamma_L(2^\omega)$ is consistent and M is the Skolem closure of $\{y_\eta : \eta \in 2^\omega\}$, then M is of type $(2^{\aleph_0}, \aleph_0)$.

Let us turn now to part (i). We shall list some conditions which are sufficient for proving the consistency of $T \cup \Gamma_{I}(2^{\omega})$.

By the compactness theorem, it is enough to show the consistency of $T' \cup \Gamma'_L(^n2)$ (where the prime on $\Gamma_L(D)$ indicates that in the definition of $\Gamma_L(D)$ τ ranges over a finite set of terms of L, say $\{\tau_0, \cdots, \tau_n\}$, each having $\leq n_0$ variables, and T' is a finite subset of T). This holds because we can replace T by $T_1 = T \cup \{Q(c_i): i < \mu\} \cup \{c_i \neq c_j: i < j < \mu\}$, the c_i -new individual constants. T_1 satisfies the hypothesis of Theorem 1, and in every model M of it $|Q^M| \geq \mu$. So by the lemma this is sufficient. This must be shown for all $n, n_0 < \omega$.

Definition 5. Let M be a model, A a subset of M, \overline{b} , $\overline{c} \in M$. Define $\overline{b} \sim \overline{c} \pmod{A}$ if for all $i \leq n_0$ and for any presentation of τ_i , $\tau_i(\overline{x}, \overline{y})$ (i.e., ordering and identification of the variables of τ_i), we have for all $\overline{a} \in A$

$$\tau_i(\overline{c}, \ \overline{a}) \in \mathcal{Q}^M \ \lor \ \tau_i(\overline{b}, \ \overline{a}) \in \mathcal{Q}^M \implies \tau_i(\overline{c}, \ \overline{a}) = \tau_i(\overline{b}, \ \overline{a}).$$

If \overline{b} is a single-element sequence we simply write b.

So clearly if the number of such presentations is n_1 (so n_1 depends on n_0 only), then this equivalence relation has $\leq (|Q^M|+1)^k$ equivalence classes, where $k=|A|^{n_0}n_1$.

Claim 1. Let D be a set of 0-1 sequences of length n and n-1 such that no two sequences are comparable (i.e. no one is an initial segment of the other). Assume that the assignment $\{y_{\eta} \to a_{\eta} \colon \eta \in D\}$ satisfies $\Gamma'_{L}(D)$. Let $\nu \in D$ be of length n-1 and let $d \in P^{M} - \{a_{\eta} \colon \eta \in D\}$ be such that $d \sim a_{\nu} \pmod{a_{\eta}} \colon \eta \neq \nu, \eta \in D\}$. Let $a_{\nu} \uparrow_{(0)} = a_{\nu}, a_{\nu} \uparrow_{(1)} = d$, and $D' = (D - \{\nu\}) \cup \nu \uparrow_{(0)}, \nu \uparrow_{(1)}\}$. Then the assignment $\{y_{\eta} \to a_{\eta} \colon \eta \in D'\}$ satisfies $\Gamma'_{L}(D')$.

Proof. Let $\langle u_1, \cdots, u_n \rangle$, $\langle v_1, \cdots, v_n \rangle$ be similar over some $\beta \leq n$, $u_i, v_i \in D'$. We must show

$$\begin{split} z_1 &= \tau(a_{u_1}, \, \cdots, \, a_{u_n}) \, \wedge \, z_2 = \tau(a_{v_1}, \, \cdots, \, a_{v_n}) \, \wedge \, \mathcal{Q}(z_1) \longrightarrow z_1 = z_2, \\ \text{i.e., } \langle \, a_{u_1}, \cdots, \, a_{u_n} \, \rangle \sim \, \langle \, a_{v_1}, \cdots, \, a_{v_n} \, \rangle \, (\text{mod } \varnothing). \end{split}$$

If $\beta=n$, we have $u_i=v_i$ and the result is trivial. If $\beta \leq n-1$, then by the definition of similarity, at most one of the v_i 's can be $v \wedge (0)$ or $v \wedge (1)$; likewise for the u_i 's. If none of the u_i 's or v_i 's are $v \wedge (0)$ or $v \wedge (1)$, then the result holds by our hypothesis. Thus without loss of generality we may

assume $v_1 \in \{v \land (0), v \land (1)\}$. Clearly for $i \neq 1, u_i, v_i \notin \{v \land (0), v \land (1)\}$. Now $a_{v_1} \sim a_v \pmod{\{a_\eta: \eta \neq v, \eta \in D\}}$, since either $a_{v_1} = a_v$ or $a_{v_1} = d$. Thus $\langle a_{v_1}, a_{v_2}, \cdots, a_{v_n} \rangle \sim \langle a_v, a_{v_2}, \cdots, a_{v_n} \rangle \pmod{\emptyset}$. Case 1. $u_1 \in \{v \land (0), v \land (1)\}$. Then $\langle a_{u_1}, a_{u_2}, \cdots, a_{u_n} \rangle \sim \langle a_v, a_{u_2}, \cdots, a_{u_n} \rangle \pmod{\emptyset}$. Clearly $\langle v, u_2, \cdots, u_n \rangle$ and $\langle v, v_2, \cdots, v_n \rangle$ are similar over the above β . And so by the assumption on $\Gamma_L'(D)$, $\langle a_v, a_{u_2}, \cdots, a_{u_n} \rangle \sim \langle a_v, a_{v_2}, \cdots, a_{v_n} \rangle \pmod{\emptyset}$. Thus we have $\langle a_{u_1}, a_{u_2}, \cdots, a_{u_n} \rangle \sim \langle a_v, a_{v_2}, \cdots, a_{v_n} \rangle \pmod{\emptyset}$. Case 2. $u_1 \notin \{v \land (0), v \land (1)\}$. Then $\langle v, v_2, \cdots, v_n \rangle$, $\langle v_1, \cdots, v_n \rangle$, $\langle u_1, \cdots, u_n \rangle$ are all similar over β , so it follows that $\langle a_{u_1}, \cdots, a_{u_n} \rangle \sim \langle a_v, a_{v_2}, \cdots, a_{v_n} \rangle \sim \langle a_{v_1}, a_{v_2}, \cdots, a_{v_n} \rangle \pmod{\emptyset}$. Q.E.D.

Claim 2. In order to show the consistency of $T' \cup \Gamma'_L(^n2)$ for all $n < \omega$ it is sufficient to prove:

For all $m < \omega$ there is a model M of T' and a sequence of sets $X_1 \subset X_2 \subset \cdots \subset X_m \subset P^M$ such that for all $i=1,\cdots,m-1$ and all distinct $a_1,\cdots,a_m,a_{m+1} \in X_i$, there is $a'_{m+1} \in X_{i+1},a'_{m+1} \notin \{a_1,\cdots,a_{m+1}\}$, such that $a'_{m+1} \sim a_{m+1} \pmod{\{a_1,\cdots,a_m\}}$.

Proof. This is a corollary of the previous claim by repeated use of it.

Claim 3. Theorem 1 follows from the following combinatorial assertion:

(*) For all m, $k < \omega$ there is $l = l(k, m) < \omega$ such that for all $r < \omega$: if F is an m-place function on a set A of power $|A| = r^l$ whose range is subsets of A of power $\leq r$, then there is $B \subset A$, $|B| = r^k$, such that for all distinct $a_1, \dots, a_{m+1} \in B$, $a_{m+1} \notin F(a_1, \dots, a_m)$.

Proof. We will show that the condition of Claim 2 follows from (*) and the hypothesis of Theorem 1. Let l(k, m) be as in (*). Define l_i , for $i=1,\cdots,m-1$, as follows: $l_1=1$, $l_{i+1}=l(m, l_i)$. Choose a model M of T' such that $|Q^M| \geq 2$, $|Q^M| \geq l_m$, $r=|Q^M|^{n-2} < \aleph_0$, where $n_2=2m^{n-0}n_1$ and $|P^M| \geq r^m$. Let $X_m=P^M$. For $k=0,\cdots,m-1$ we will define X_{m-k} satisfying the hypothesis of Claim 2 and such that $|X_{m-k}| \geq r^{lm-k-1}$. Suppose X_{m-k_0} satisfying the hypothesis of induction has been found. Let F be the m-place function from X_{m-k_0} into subsets of X_{m-k_0} with less than r elements obtained by letting $F(a_1,\cdots,a_m)$ be a complete set of representatives of the equivalence relation $\sim \mod\{a_1,\cdots,a_m\}$. (This

relation has at most $|Q^M|^{n_2}$ equivalence classes.) Now by (*) there is a set $B=X_{m-k_0-1}$ with at least $r^{l_m-k_0-1}$ elements such that if $a_1,\cdots,a_{m+1}\in X_{m-k_0-1}$ are distinct, then $a_{m+1}\notin F(a_1,\cdots,a_m)$, so a choice of a'_{m+1} to satisfy the hypothesis of Claim 2 can be made from $F(a_1,\cdots,a_m)$.

Now to prove Theorem 1 we need only show

Claim 4. (*) holds.

Remark. Maybe this claim has already appeared in Erdős and Hajnal [3].

Proof. Let $\{y_1, \dots, y_{r^k}\}$ be random variables on A. What is the probability that $B = \{y_1, \dots, y_{r^k}\}$ will not fulfill the demands of (*)? It is \leq

$$\sum_{\substack{i_1,\cdots,i_{m+1}\leq r^k}} \left[\text{the probability that } y_{\sigma(i_{m+1})} \in F(y_{\sigma(i_1)},\cdots,y_{\sigma(i_m)}) \right]$$

$$+ \sum_{1 \le i \ne j \le r^k} \left[\text{the probability that} \right]$$

$$\leq \binom{r^k}{m+1} \frac{(m+1)!r}{r^l} + \binom{r^k}{2} \frac{1}{r^l} \le \frac{r^{km+k+1} f(m, k)}{r^l}$$

where l = l(m, k) is some function of m and k. So we certainly can choose l = l(m, k) such that the whole expression is l = l(m, k) such that it is possible to find a suitable set $\{y_1, \dots, y_{-k}\}$. Q.E.D.

This completes the proof of Theorem 1.

- 4. Remarks and generalizations. We now turn to the original problem of the consequences of T having a model of type (\aleph_{ω} , \aleph_0). Consider the following combinatorial assertion.
- (**) For all k, $m < \omega$ there is $l < \omega$ such that for any m-place function F from \aleph_l to the countable subsets of \aleph_l , there is $A \subseteq \aleph_l$, $|A| = \aleph_k$, such that for all distinct $a_1, \dots, a_m, a_{m+1} \in A$, $a_{m+1} \notin F(a_1, \dots, a_m)$.

This is the problem mentioned in the introduction; the combinatorial lemma (**) is known to be true for m = 1, but for m > 1 and even k = 0 it is still an open question. See Hajnal [4].

Theorem 2. If (**) holds and T has a model of type $(\aleph_{\omega}, \aleph_0)$ then for all λ , μ such that $|T| \le \mu \le \lambda < \text{Ded}^*(\mu)$, T has a model of type (λ, μ) .

Proof. As in the proof of Theorem 1 it suffices to show that for all n $\Gamma'_{l}(^{n}2)$ is consistent. To see this let l=l(k, m) be as in (**).

For all $i=1,\cdots,m-1$ define l_i as follows: $l_1=1,\,l_{i+1}=l(l_i,\,m)$. Now let M be a model of T of type $(\aleph_\omega,\,\aleph_0)$. For $i=1,\cdots,m$ we define $A_i\subset P^M$ by retrograde induction, such that $|A_i|=\aleph_l$: Choose A_m to be any subset of P^M of power \aleph_l . Now assume that A_{i+1} is defined and for all $a_1,\cdots,a_m\in A_{i+1}$ let $F(a_1,\cdots,a_m)$ be a set of representatives in A_{i+1} of each equivalence class of $\sim (\text{mod }\{a_1,\cdots,a_m\})$. It is not hard to see that there are $\leq \aleph_0$ such classes; so $|F(a_1,\cdots,a_m)|\leq \aleph_0$, and by (**) there is $A_i\subseteq A_{i+1},\,|A_i|=\aleph_{l_i}$, such that for all distinct $a_1,\cdots,a_m,\,a_{m+1}\in A_i,\,a_{m+1}\notin F(a_1,\cdots,a_m)$. The sequence A_1,\cdots,A_m satisfies the requirements of the X_i in Claim 2, and so $T\cup \Gamma_i'(^n2)$ is consistent. Q.E.D.

We may be interested in other theorems of the form: $\{(m_i, n_i): i < \omega\} \rightarrow (\lambda, \mu)$. Vaught's and Chang's two-cardinal theorems (see e.g. [2]) can easily be generalized to this case, but give less than our result (only when $\lambda \leq \mu^+$, $\mu = \sum_{K < \lambda} \mu^K$). Vaught's two cardinal theorem for cardinals far apart generalizes easily to finite hypothesis (using Ramsey's theorem instead of the Erdös-Rado partition theorem) and it cannot be improved. The following remains open (there are, of course, many others):

Question 1. Is our result best possible? That is, does there exist a sentence for which every n has a model M, $\aleph_0 > |P^M| > |Q^M|^n$, $|Q^M| \ge n$, but does not have a $(2^\mu, \mu)$ -model for some μ , and even: has a (λ, μ) -model iff $\mu < \lambda < \mathrm{Ded}^*(\mu)$ (assuming for some μ , $\mathrm{Ded}^*(\mu) < 2^\mu$).

Conjecture 2. $\{(m_i, n_i, k_i): i < \omega\} \rightarrow (\lambda, \mu, \kappa)$ when $m_i \geq n_i^i, n_i \geq k_i^i, k_i \geq i, \kappa \leq \mu \leq \lambda \leq \text{Ded}^*\kappa$.

Conjecture 3. $\{(2^{n_i}, n_j): i < \omega\} \rightarrow (2^{\mu}, \mu) [n_j \ge i].$

The following remarks on the properties of $\Gamma_I(D)$ may be useful:

If in Definition 4, we demand only that $k_{i,j} = \min\{l: \eta_i(l)\} \neq \eta_j(l)\} = \min\{l: \nu_i(l) \neq \nu_j(l)\}$, and $\eta_l(k_{i,j}) = \nu_l(k_{i,j})$, $\eta_j(k_{i,j}) = \nu_j(k_{i,j})$, we get that the consistency of $T \cup \Gamma_I({}^\omega 2)$ implies T has a $(2^\lambda, \lambda)$ -model for every λ .

It can be shown that the existence of a model of T of type (λ, \aleph_0) , where λ is real-valued measurable, implies the consistency of $\Gamma_L(^\omega 2)$, even for sentences of $L_{\omega_1,\omega}$.

Papageorgiou shows that our method gives a positive answer to Conjecture 2 if we strengthen the assumption to: $k_i \geq i$, $n_i \geq (k_i)^i$, $m_i \geq (n_i)^{(n_i)^i}$; and that this generalizes to any finite number instead of three.

It is trivial that if T has a model M, $|P^M| \geq \aleph_0 > |Q^M|$, then for every

 $\lambda \geq |T|$, T has a model of type $(\lambda, |Q^M|)$. Also if for every n, T has a model M, $|P^M| \geq \aleph_0 > |Q^M| \geq n$, then for every $\lambda \geq \mu \geq |T|$, T has a model of type (λ, μ) . Hence in Theorem 1 we ignore those cases.

On *n*-cardinal theorems see Chang and Keisler [2]. Our result was announced in [5], and [6, \S 0, (6) p. 251]. In [6, \S 0] there is a discussion on *n*-cardinal problems.

Added in proof. The main conjecture has been proved and submitted to the Proceedings of the American Mathematical Society.

REFERENCES

- 1. J. Baumgartner, Almost-disjoint sets, the dense-set problem, and the partition calculus (to appear).
- 2. C. C. Chang and H. J. Keisler, Theory of models, North-Holland, Amsterdam, 1973.
- 3. P. Erdös and A. Hajnal, On the chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61-99. MR 33 #1247.
- 4. A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), 123-128.
- 5. S. Shelah, Various results in model theory, Notices Amer. Math. Soc. 19 (1972), A-764. Abstract # 72T-E103.
- 6. ——, On models with power like orderings, J. Symbolic Logic 37 (1972), 247-267.

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL