THE MEASURE OF THE INTERSECTION OF ROTATES OF A SET ON THE CIRCLE¹

WOLFGANG M. SCHMIDT

ABSTRACT. Let S be a set of real numbers modulo 1 of Lebesgue measure less than 1. It is shown that for every $\epsilon > 0$ and for large k, there exist translates $S + y_1, \dots, S + y_k$ of S such that the measure of their intersection is less than ϵ^k .

1. Let U be the group of real numbers modulo 1, and S a subset of Lebesgue measure $\mu(S) < 1$. Given real numbers y_1, \dots, y_k , write $\mu(y_1, \dots, y_k)$ for the measure of the intersection of the k translates $S + y_1, S + y_2, \dots, S + y_k$. Finally, denote by $\phi(k)$ the infimum of $\mu(y_1, \dots, y_k)$ over all k-tuples y_1, \dots, y_k . Erdös, Rubel and Spencer² had conjectured that

(1)
$$\lim_{k\to\infty}\phi(k)^{1/k}=0.$$

In the present note we shall prove this conjecture.

The convergence expressed by (1) is not uniform with respect to the sets S. In fact, it can be shown that for $0 < \alpha < 1$, $\epsilon > 0$ and $k \ge 1$, there exist sets S with $\mu(S) = \alpha$ and $\phi(k)^{1/k} > \alpha - \epsilon$.

2. Since $\mu(S) < 1$, the set S is contained in a countable union of intervals whose total measure is less than 1. In fact, this is true even with intervals of the type $a \le x < b^3$ with rational endpoints a, b. Hence we may assume that S itself is a countable union of such intervals.

Using the easily established relation

$$\int_{U} \mu(y_{1}, \dots, y_{m}, z_{1} + x, \dots, z_{n} + x) dx = \mu(y_{1}, \dots, y_{m}) \mu(z_{1}, \dots, z_{n}),$$

Copyright © 1975, American Mathematical Society

Received by the editors October 6, 1972 and, in revised form, January 11, 1974. AMS (MOS) subject classifications (1970). Primary 10F40; Secondary 28-00, 43A05.

Key words and phrases. Numbers modulo 1, measure, translates.

¹ Research supported by NSF GP-33026X.

 $^{^2}$ P. Erdös, L. A. Rubel and J. H. Spencer, in the problem collection of the 1972 number theory conference in Colorado.

³ We are considering intervals modulo 1. Hence if $\{x\}$ denotes the fractional part of x, the interval $a \le x < b$ consists of numbers x modulo 1 with $\{x - a\} < \{x - b\}$.

one sees that $\phi(m + n) \leq \phi(m)\phi(n)$. Hence if t is any positive integer, we have $\phi(jt) \leq \phi(t)^j$ $(j = 1, 2, \dots)$, and if k is a large integer with $jt < k \leq (j + 1)t$, then $\phi(k) \leq \phi(jt)\phi(k - jt) \leq \phi(jt) \leq \phi(t)^j$ and

$$\phi(k)^{1/k} \leq \phi(t)^{j/k} \leq \phi(t)^{(1/t)-(1/k)}.$$

Therefore the limit superior of $\phi(k)^{1/k}$ as $k \to \infty$ cannot exceed $\phi(t)^{1/t}$. Thus in order to prove (1), it will suffice to show that for every $\epsilon > 0$ there is an integer t with

$$(2) \qquad \qquad \phi(t)^{1/t} < \epsilon.$$

3. Write $\mu(S) = \mu$, and choose $\delta > 0$ so small that

(3)
$$2\delta < 1 - \mu$$
 and $(\delta/(1 - \mu - \delta))^{1 - \mu - \delta} < \epsilon$.

We may write $S = S_1 \cup S_2$, where S_1 is a finite union of intervals $a \le x \le b$ with rational endpoints, and where $\mu(S_2) \le \delta$.

Let r be a common denominator of the endpoints of the intervals contributing to S_1 . Choose an integer s with $s > 1/\delta$, and put

(4)
$$t = rs, \quad \nu = 1/t.$$

Let $\chi(x)$ be the characteristic function of S, and write

$$I_{\nu}(y) = \int_{y}^{y+\nu} \chi(x) \, dx.$$

Lemma. The function

$$J_{\nu}(z) = I_{\nu}(z + \nu)I_{\nu}(z + 2\nu) \cdots I_{\nu}(z + t\nu)$$

satisfies $J_{\nu}(z) \leq (\epsilon \nu)^{t}$.

To prove the Lemma, we observe that S_1 consists of a finite number (in fact less than *r*) intervals *E* of the type $(u/r) \le x < (u + 1)/r$ with integral *u*. For each such interval *E* contained in S_1 , let *E'* be the enlarged interval $(u/r) - (1/t) \le x < (u + 1)/r$. Let S'_1 be the union of the intervals *E'* so obtained. It is clear that

(5) if
$$x + w \in S_1$$
 with $0 \le w \le v$, then $x \in S'_1$.

For each interval E above we have $\mu(E') = \mu(E) + (1/t)$, and hence we have $\mu(S'_1) < \mu(S_1) + (r/t) = \mu(S_1) + (1/s) < \mu(S) + \delta = \mu + \delta$. Now S'_1 is a disjoint union of intervals $(\nu/t) \le x < (\nu + 1)/t$ with integral ν . If, say, it is a disjoint union of p such intervals, then $\mu(S'_1) = p/t$ and hence

(6)
$$p = t\mu(S'_1) < t(\mu + \delta).$$

Exactly q = t - p of the numbers $z + \nu$, $z + 2\nu$, \cdots , $z + t\nu$ lie outside S'_1 ; let these be the numbers $z + m_1\nu$, $z + m_2\nu$, \cdots , $z + m_q\nu$. Since each integral $I_{\nu}(y)$ is always $\leq \nu$, we have

(7)
$$J_{\nu}(z) \leq \nu^{p} I_{\nu}(z+m_{1}\nu) \cdots I_{\nu}(z+m_{q}\nu).$$

Now $I_{\nu}(z + m_i\nu)$ is the integral of $\chi(x)$ over the interval $z + m_i\nu \le x < z + (m_i + 1)\nu$ $(i = 1, \dots, d)$. These intervals are disjoint from each other. Furthermore, since $z + m_i\nu \notin S'_1$, (5) implies that these intervals are disjoint from S_1 . Therefore if \overline{S}_1 is the complement of S_1 , we have

$$I_{\nu}(z + m_{1}\nu) + \cdots + I_{\nu}(z + m_{q}\nu) \leq \int_{\overline{S}_{1}} \chi(x) dx \leq \mu(S_{2}) < \delta.$$

By the arithmetic-geometric inequality, the product of the q integrals on the left is $\langle (\delta/q)^q$, and (7) yields

$$J_{\nu}(z) < \nu^{p} (\delta/q)^{q} = \nu^{t} (\delta t/q)^{q}.$$

From (6) we have $q = t - p > t(1 - \mu - \delta)$, whence

$$(\delta t/q)^q < (\delta/(1-\mu-\delta))^q < (\delta/(1-\mu-\delta))^{t(1-\mu-\delta)} < \epsilon^t$$

by (3), and the Lemma is proved.

4. The desired inequality (2) follows at once from the Lemma by observing that

$$\begin{split} \phi(t) &\leq \nu^{-t} \int_{\nu}^{2\nu} dy_{1} \cdots \int_{t\nu}^{(t+1)\nu} dy_{t} \ \mu(-y_{1}, \cdots, -y_{t}) \\ &= \nu^{-t} \int_{U} dx \int_{\nu}^{2\nu} dy_{1} \cdots \int_{t\nu}^{(t+1)\nu} dy_{t} \ \chi(x+y_{1}) \cdots \chi(x+y_{t}) \\ &= \nu^{-t} \int_{U} dx \ I_{\nu}(x+\nu) I_{\nu}(x+2\nu) \cdots I_{\nu}(x+t\nu) \\ &= \nu^{-t} \int_{U} J_{\nu}(x) dx < \nu^{-t} (\epsilon \nu)^{t} = \epsilon^{t}. \end{split}$$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COL-ORADO 80302