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MAXIMAL ASYMPTOTIC NONBASES

PAUL ERDÖS AND MELVYN B. NATHANSON

ABSTRACT.   Let A   be a set of nonnegative integers.  If all but a finite

number of positive integers can be written as a sum of h  elements of A,

then A   is an asymptotic basis of order h.   Otherwise,  A   is an asymptotic

nonbasis of order h.   A class of maximal asymptotic nonbases is constructed,

and it is proved that any asymptotic nonbasis of order 2 that satisfies a cer-

tain finiteness condition is a subset of a maximal asymptotic nonbasis of or-

der 2.

Let A   be a set of nonnegative integers containing 0.  The »j-fold sum of

A,  denoted hA,  is the set of all sums of h not necessarily distinct elements

of A.   If hA   contains all but a finite number of positive integers, then A is

an asymptotic basis of order h.   The set A   is a minimal asymptotic basis of

order h  ii A   is an asymptotic basis of order h,  but A\jfl! is not an asymp-

totic basis of order h  loi every  a £ A.   Examples of minimal asymptotic bases

were constructed in [l], and also an example of an asymptotic basis which

contains no subset that is a minimal asymptotic basis.

The set A  is an asymptotic nonbasis of order h  ii A   is not an asymp-

totic basis of order h.   Ii A   is an asymptotic nonbasis of order h,  but Aui«i

is an asymptotic basis of order h  for every nonnegative integer a ¿ A,  then

A   is a maximal asymptotic nonbasis of order h.  Maximal asymptotic nonbases

were constructed in [l]  by taking finite unions of the nonnegative parts of

congruence classes.   In this paper we construct a new class of maximal asymp-

totic nonbases that are not unions of congruence classes, and we prove that

every asymptotic nonbasis of order 2 that satisfies a certain finiteness con-

dition is a subset of a maximal asymptotic nonbasis of order 2.  We do not

know whether every asymptotic nonbasis is a subset of a maximal asymptotic

nonbasis, nor whether there exist maximal asymptotic nonbases with zero

density.

Let [a, b]   denote the set of integers 72   such that a < n < b.
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Theorem 1.   Let h > 2,  and let n1 < n2 < • • •  be an increasing sequence

of positive integers such that h n   + 2h < «, + j-   Let

A = [0, »2j] u   U Lhnt + 2, «t+1].
z = l

Then there exists a maximal asymptotic nonbasis A    of order h such that

A C A    and hA = hA .

Proof.   We shall construct an increasing sequence A = A. CA. C4, C".

of asymptotic nonbases of order h  and two increasing sequences of positive

integers  m. < m2 < • • •  and q. < q2 < • • •   such that

(i)772.<7»22<...< to,   are the k  smallest integers not in A , ;

(ii) A,  u {»72. Î is an asymptotic basis of order h;

(iii) hA, = hA   for all k\  and

(iv) q i(h- l)Ak for all / e[l, k].

Let A*=Ufe=0 Ak- Clearly, hA C hA*, since A = AQ C A*. If »2 £ hA*, then

»2 C^A, for some k, and so »2 £ hA by (iii). Therefore, hA = »»A, and A is

an asymptotic nonbasis of order h. Let m /L A . Then »tz < m, for some k,

and ?72 ̂  A , . It follows from (i) that m = m . for some j £ [1, A], and from (ii)

that A U SttzS is an asymptotic basis of order h. Therefore, A is a maximal

asymptotic nonbasis of order h   such that hA = hA .

We construct the sequences  ÍA. i, Íttz, !,  and  \qA inductively.  Clearly,

hA   consists of all nonnegative integers except those of the form hn   + 1. Let

m¡  be the largest positive integer such that (h - 1)(A U [0, ttZj - 1]) = (h- l)A .

Then (h - 1)A ^ (h - 1)(A u [0, mj).  Let Aj = A u [0, mx - l],  and choose

an integer q,   in

(h - 1)(A\ u Uj})\(Ä - 1)A\ = {b- 1)(A u [0, mfi\{b - DA.

Let

B l = {hnt+ 1 - qr\hnt + 1 - q :> max(n , m , q )\

and let A j = A'j u Bj. Since [0, ttZj - l] C Aj C A x  and i»j ^ B,, it follows

that »tz .   is the smallest positive integer not in A ,. If hn   + 1 £ hA j,  then

hn   + 1  is the sum of h  elements of Aj,  and at least one of these summands

must be in the interval [n   + 1, hn   + l].   But there is at most one element of

A j  in this interval, namely,  hn   + 1 - qv hence hn + 1 - qx   must be one of

the h  summands of hn   + 1. Then the sum of the »3-1  remaining summands

must be  q.. Since  all  elements  of B.   are greater than  q.,  these summands

are all elements of A\. But qx 4 (h - 1)A\. Therefore, hnt + 1 i hAv  and

so hA = hAv  But
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qy£ (h- lXA'j u {mA) C(è- l)(Aj u \mA),

and so A j U {ttZj Î is an asymptotic basis of order h.   Therefore, the integers

772.   and q.   and the asymptotic nonbasis A.   satisfy conditions (i)—(iv).

Now suppose that integers m. < ■ • • < m,   ,   and q. < • • • < q,   .   and

asymptotic nonbases  A = AQ C Aj C ■ •• C Afe_j   satisfy conditions (i)-(iv).

If (h - l)(Ak_x u Íz72fe_1 + 1\) 4 (h - l)Ak_1,  let  ttz^ = m        + 1. Otherwise,

let 772,   be the largest integer such that m, > m,_.   and

(h - l)(Ak_ lVÍmk_l + l,mk- 1]) = (h - l)Ak_l.

Let A'k = Ak- 1 U [mk- 1 + 1> mk - lh Then (Â - l)/l/e_ i = ^ - ^L S

U-IHA^ u\mk\). Choose an integer qk in (¿> - l)(A^ U \mk\)\(h - l)A^,and let

Bk = \hnt + 1 - qk\hnt - qk > max(«(, mk, qv •• •, qk)\-

Now let A, = A' u B,.  Since A,\A,_.   consists of integers all greater

than »tz,   .,  and since \.m,_. + 1, m, — 1] C A,  C A,,  it follows that ttz. < ...

< »tz,    . < ttz,   are the k  smallest integers not in A, .  If »772   + 1 £ hA,,  then

7772   + 1   is the sum of h   elements of A, ,  at least one of which must be in the

interval [72   + 1, »»»2   + l].  But the only such elements of A ,   are of the form

hn   + 1 - q . for / e[l, &].  Since the elements of B,   are all larger than every

q .,  it follows that  q. £ (h - l)A,   for some  j e[l, k]„  But  q,4(h- 1)A,,

and, since   (h   - l)A'k = (h - l)Afc_j,  also  q. 4 (h - l)A'k tor j e[l, k- 1].

Therefore,  hn(+ 1 4 hAk,  and so  hAk = hA.   But  qk £ (h - D)(A'k U (772fel) C

(h — 1)(A , U {772, S),  and so A,  u \mi} ls an asymptotic basis of order h.

Thus, the integers  772,   and  q,   and the set A,   satisfy conditions (i)—(iv).

This completes the induction.

Remark.  Since A   contains arbitrarily long sequences of consecutive in-

tegers, and A C A ,  the maximal asymptotic nonbasis  A    is not a finite union

of the nonnegative parts of congruence classes.

Theorem 2.   Let A   be an asymptotic nonbasis of order h  such that AuF

is an asymptotic nonbasis of order h for any finite set F of nonnegative in-

tegers.   Then A C A ,  where A    is an asymptotic nonbasis of order h  such

that, for every integer x 4 (h - 1)A ,   the set A    U ¡xi  is an asymptotic basis

of order h.

Proof.  We shall construct a sequence A = A^ C A[ C A2 C--  of asymp-

totic nonbases of order h,  and an increasing sequence of positive integers

72. < 72, < • • •  such that

(i)  Aj\A,   ,   is a finite set of positive integers all larger than n,   j|
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(ii)  n, < 72-, < • • • < 72,   are the  k smallest integers not in  hA, ;  and

(iii) if   0 < x < »2^/2 and  x 4 (h - 1)Afe,  then  ?»   - x eA,.

Let A   =   Ur=n ^¿'   ^y ^ an<^ (")' tne set ^    does not contain the numbers

»2., »»2, • ■ • , and so A    is an asymptotic nonbasis of order h.   If x 4 (h - 1)A ,

then x 4 (h - 1)A.   for all k.  Choose »z, > 2x.  Then »z,-   x e A, C A   by

(iii), and so nk £ 2(A* U ix|) C h(A* U {*}),  since 0 £ A C A*. Therefore,

A    U ixi is an asymptotic basis of order h for every positive integer x 4

(h - 1)A*.

We construct the sequences  {A, i and  {»z, i inductively.  Suppose that

integers  n. < • • • < n,   .   and asymptotic nonbases  A = A. C A. C • • • C A,   .

satisfy conditions (i)—(iii).  Let Afe = Âfe_j U [»z/fe_1 + 1, 2«.   j].   By (i),

A,\A   is finite, and so the set A ,     is an asymptotic nonbasis of order h.   Let

»2,   be the smallest integer such that »2, > »2, _.   and »2,   4 hA,.  Then »2, >

2»2,      . Let  F,   be a maximal subset of the interval  [»2,/2, »2,]  such that

»2,  4 h(A , Ci F,). Let Ak = A,  U Fk. Clearly, the set A,   satisfies condi-

tions (i) and (ii). If 0 < x < »z,/2 and x 4 (h - DA,, then n,-x £\nj2,nA,

and so  F,  U i»2, - x| C [»»l/2, »»,]   and »2,   4 h(A', U F, U {»2, - x|).  It follows

from the maximality of F,   that n,-x £ F, C A,. Therefore, A,   satisfies

condition (iii), and the induction is complete.

Corollary. Let A be an asymptotic nonbasis of order 2 such that A u F

is an asymptotic nonbasis of order 2 for every finite set F of nonnegative in-

tegers.   Then A   is a subset of a maximal asymptotic nonbasis of order 2.

Remark. The Corollary suggests the following problem.  If A is an asymp-

totic basis of order 2 such that A\F is also an asymptotic basis of order 2

for every finite subset  F of A,  then does   A contain a subset that is a mini-

mal asymptotic basis of order 2?
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