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ON THE /»-ELEMENTS OF A FINITE GROUP

C. Y. HO

ABSTRACT.      Let  G  be a finite group, p   a prime, and x  a p-element

in  G.   An element g  in  G  is called a witness of  G  if the subgroup

generated by  x  and  g is a p-group.   The set of all witnesses of x in

G  is denoted by   W(x).   This paper shows that  x belongs to a given

Sylow p-subgroup P   of  G  if one of the following holds: (1)  G  is p-sol-

vable and  W(x)oPri  \x8\g e G\;  (2)  G  is p-solvable,  P = (P\Z(P)),

and  W(x)?P\Z(P);   (3) cl(P)s2  and   W(x)dP;   (4) x normalizes a sub-

group  Pj  of  P   with   iPtPjsp2   and   W(x)^P;  (5)   |P| = p4   and

W(X) D   P.

1.   Introduction and notation.    Let   G be a finite group,  p a prime number,

and x a p-element in  G.   An element g  in  G is called a witness of x if

the subgroup generated by  x and g  is a  p-group.   The set of all witnesses

of  x in  G is denoted by  W(x).

It is  interesting to  know  how   W(x)   reflects  the property  of   x.    For

example,  it  is  interesting  to  see  which property  of  W(x)   will  imply that

x belongs  to  the maximal  normal  p-subgroup  of   G,   and  which property of

W(x) H   H   will  imply  that   x   belongs to  H,   where   H is a given p-subgroup

of G.

When   W(x) contains the conjugacy class of  x,  Baer's theorem tells us

that  x belongs to the maximal normal  p-subgroup of  G.

This paper will show that x belongs to a given Sylow p-subgroup when

certain conditions are imposed on the Sylow p-subgroup and W(x). This is

summarized in

Theorem 1.   Let  G be a finite group and P a Sylow p-subgroup of G.

For x £ G,   if one of the following holds, then  x £ P.

(1) G  is p-solvable and W(x) D P Cl {x8|g £ G\.

(2) G is p-solvable,   P = (P\z(P)),   and W(x) 2> P\Z(P).
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(3) cl(P) < 2 and W(x) D P.

(4) x normalizes a subgroup  P    of P with   \P: P A < p    and W(x) D P.

(5) \P\ = p4  and W(x) D P.

Some examples are given in the final section which show that the conclu-

sion of Theorem 1 becomes invalid when the stated conditions are relaxed.

All groups in this paper are assumed to be finite.   Our notation is

standard and taken mainly from Ll].   In particular, let  G be a group.   Then

Soc(G),  Sol(G),  0(G),  F(G), $(G),  exp(G) and G' denote respectively

the joint of all minimal normal subgroups, the largest solvable normal sub-

group, the maximal normal p-subgroup, the Fitting subgroup, the Frattini

subgroup, the exponent and the commutator subgroup of  G.   Moreover, for

any nilpotent group G,  cl(G) denotes the nilpotent class of G.

2.   Proof of Theorem 1.   Suppose  X is an arbitrary finite group.   If

Sol(x) = 1,  then it is well known that  C„(Soc (X)) = 1.   This can be seen
A

from the following.   Since Sol (X) = 1, Soc (X) = S. x • < < x S , where each

5. is a nonabelian group.   Thus  C„(Soc (X)) (~l Soc (X) = 1.   However,

Cx(Soc(X)) <3 X which, together with the fact that Sol(X) = 1, implies

Cx(Soc(X))= 1.

We use induction on   \G\  to prove Theorem 1; assume that Theorem 1 is

false.   Hence  0 (G) = 1  and G= (P, x).   Let  K be the conjugacy class

containing  x and let   S  be any minimal normal subgroup of  G.   By induction

we can see that  G = PS = SP.   Let  B(x) = ¡X|X =   (x. A)   is a p-group and

A D P\.   Choose   R £ B(x) such that   \R Pi P\   is of maximal order.

Cases (1) and (2).    Since   G   is  p-solvable and  O  (G) = 1,  S   is  a

normal  subgroup  of order relative prime  to   p.    Let    x     £   K C\ P  tor

some  s £ S.    Ii P O K C W(x),  then   (xs, x)   is a p-group.   However x~  xs =

[x, s] £ S.    Therefore   W(x) DPflK implies  [x, s] = 1,  and so x = x6  £ P.

This proves (1).

Now suppose Case (2) occurs.   For g £ G,  we have  g = a(g) • b(g),  where

a(g) £ S and  b(g) £ P.   Hence xg e P\Z(P) if and only if xa(e) £ P\Z(P).

Since  [x, a(g)] = x" V(g) e S, K n P C Z(P).   Hence  [xs, y] = 1  tor all

y £ P.   As

[**, y] = [x[x, s]y] = [x, y][x-s\[x, s], y],

[x, y] = ([[x, s], y]- l)[*.*l~ . Since S <3 G and W(x) D P\z(P), [x, y] = 1

for all y £ P\z(P). As (p\z(P)) = P, [x, P] = 1, which is impossible.

This contradiction completes the proof of Case (2).
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Case (3).   By (1) we may assume that Sol(G) = 1.   Hence Soc (G) = S.

Let   F = {[y,  x]| y £ P\.    If   F = 1,   then   x e P.    Therefore   1 4

(F) CCc(x).   For any y, z £ P,   we have  [y, x]z = [yz, x] [z, x]~   .   This

shows  P CNA(F)).   Hence  (F) < G.   Since  Sol(G)= 1,  C^Soc (G)) = 1.

Thus  S C (F).   Now x £ Cr(S) implies  x = 1.   Of course   1 e P,   a contra-

diction.   This completes the proof of (3).

Case (4).   The case  \P: P  \ = p is trivial.   Hence we may assume that

\P: P.| = p  .   Therefore there exists an element  y £ N  (P,) \P,   such that

( x, y )   is a p-group.   Since   (x, y)C   N C(P,),   (x, y, P j )   e B(x).   So

\R O P\ ^ |P.|.   This shows that  R n P  is a maximal subgroup of any

Sylow  p-subgroup containing it.   Clearly  x normalizes  POP  and an

application of (3) completes the proof of (4).

Case (5).   By (3) and (4) we may assume that  cl(P) > 2 and  \R O P\ /> p2.

Therefore   P'  t Z(P), P' = 0(P),  and  P/P' ä Zp x Zf.   Suppose  exp(P) = p2.

Let y e P  be an element of order p    and let  D = (y).   We may assume that

R n P = D.   Suppose  x e NC(D).   Let y x £ Np(D)\D.   Then (x, D, y y) £ B(x),

which violates the maximality of  R.   Therefore   x 4 Nr(D),  and  R = ( y, x)

is a Sylow p-subgroup of G.   Let N = N R(D).   Then  ¿V ̂  P.  and  NOD-   Since

Nx = N and   |/V| = p  ,   D C\ Dx = E,  where   E  is the unique subgroup of order

p in D.   So x centralizes F.   If D O P,   then  E C Z(P),  which implies

F C Z(G), a contradiction.   So D 5a P.   Let /V x = Np(D) and let u £ P\n y

Then  Nj = /V" and so D O D" = F.   This implies  F C Z(P) which is impossible.

Hence  exp(P) = p.    If p = 2, then  P  is abelian, a contradiction.   Hence  p

is odd.   Let  A  be a maximal abelian  subgroup of  P  containing  P  .   If

A / P',  then  A as Z   x Z   x Z      and   P ^ A(y)  with y    = 1.   We can view

A  as a 3-dimensional vector space over the finite field of p-elements, and

y  a linear transformation on  A.   With respect to a suitable basis  [v., v , vA

of A, y       has the matrix representation

1

1

0
- 1 - 1

Hence  vy.       = v ,v 2 and vy2      = v -.v v   So

(yvl)p = (yvly-l)(y2vly-2)---(y(p-l)vxy-(p-l))yp-1 .yv}

<

■2 y-(p-l)

Let z = y     .   Using the linear transformation notation, from  z = 1,  we see

that  t/(*-1)   =1.   Therefore
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This is impossible.   Hence   P'  is a maximal abelian subgroup of  P.    So

P' = Cp(P'),  and  P/P '   is isomorphic to a subgroup of Aut(P').   Since the

Sylow p-subgroup of Gl(2, P) has order p,   |P| = p  ,  a contradiction.   This

completes the proof of (5).

Remark.    The proof of (5) also shows that a  p-group  P  of order p     with

exp(P) = p  is not of maximal class.

A stronger version of (3) in Theorem 1 is the following.

Proposition 1.    Let  H be a nilpotent subgroup of a finite group  G and

let x £ G.    If for any t £ H,   (x, t)  is a nilpotent group of nilpotent class

not greater than   2,  then   (H, x)   is nilpotent.

Proof.   We apply induction to   \G\.   We may assume that  G =  (H, x).

Let  S be a minimal normal subgroup.   By induction,   G/S is nilpotent.   Set

F = \{t, x]\ I £ H\.   For any   í,, Í, e H we have  [/ y x] 2 = It ^ r x][f2, x]~ l.

Therefore   (F) < G and x e CC(F).   If  F = |l!,  then the conclusion of the

proposition holds.   Hence we may assume   F 4 il S.

Suppose Sol(G)= 1.   Then S= Soc(G).   Since  C^.(Soc(G)) = 1  and

(F)< G,   S C (F).   Therefore  x e CC(S),  and so x = 1.   Of course   (H, x)

is a nilpotent group in this case.

If Sol (G) 4 1,  then we may assume that  5 is an elementary abelian

p-group.   Therefore  G is solvable.    By induction we may assume that

S = F(G).   By  [1, p. 218],  CG(S) = S.   Therefore  S C (F),  and so x £ S.

Hence   G = HS.    For any prime number  q 4 p.   x centralizes every  ^-element

of H.   Since  H is nilpotent,  H is a p-group.   Hence  G is a p-group.   This

completes the proof of Proposition 1.

3.   Some examples.   If we remove the condition   (P\Z(P)) = P  in  (2)

of Theorem 1,  then any  G with more than one nontrivial abelian Sylow

p-subgroup will be a counterexample.   The following is a less trivial

example in this direction.

Example (a).   Let   V be a  3-dimensional vector space over the field

F  with four elements.   Choose a basis for  V which we use to identify the

elements in  G1(V) by its representing matrices.   Let

/o      1      o\ //      o      o\
A = I 0        0 1 J,        B =( 0 1        0   I

\l 0        0/ \0        0        1/
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where / e f\}0, 1 ¡ and f> = 1.   Then A3 = Bi = 1 and   (A, B,   is a 3-group.  Let G =

V(A, B) be the semidirect product of V and  A, B  such that for v £ V and T e(A, B),

v     is defined to be  zv + v(T - 1).   In  G we use the multiplicative notation.

Let

C=BA

After a short calculation we see that

cv(c)nl(cv(A)\cv(c)) ■ (cv(B)\cv(c))]

is not empty.   Let v    £ Cv(A)\cy(C), v2 £CV(B)\CV(C) and v^v2 £Cy(C).

Hence   1 = [v .v ?, C~  ] = Iv., C~  ]   2 {v , C~  ].   Since   V is an elementary

abelian 2-group,  [v v C'1] = [v-,  C'1].   Let  p = Lv v C~ '] 4 1.   Then   (vC, C)

is not a 3-group.   But   (vC, A f l = (vCV\ A) = (vlv y C~l]C, A) = (C, A)

is  a 3-group.   Similarly   (vC, B)   2 = (C, 3)  is a  3-group.   This shows that

although   (vC, A), (vC, B)  are   3-groups and  P =  (A, B )   is   a Sylow

3-subgroup of G, vC ^ (A, B).   Of course  G is 3-solvable.   Since  Z((A, B))

= (BBABa2),   P = (P\Z((A, B))).   Also   \P\ = 34  in this example.   There-

fore it can be used to show that if we replace the stated condition in (5) by

W(x) which contains some set of generators of  P,  then the conclusion is

false.

Example (b).   Let  p be a prime and let F be the finite field with p

elements.   Let  G be the group of all  3x3 invertible matrices with deter-

minant 1 over F.

Suppose

0 l\ /l 0

1 0 J,     and    z = I 0 1

0         1/                         \0 1

Then  G = (x, y, z ) and   P = (y, z) is a Sylow  p-subgroup of  G.   Clearly

cl(P) = 2.   It is not difficult to see that (x, y),   (x, z)   are both  p-groups.

Of course  x 4 P-    This shows that if we just require that (x, y)  is a

p-group for y belonging to a given set of generators of P, then the conclu-

sion of (2) might be false.
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The author is indebted to Dr. S. Sidki for suggesting Example (a) in

this section.
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