ON THE p-ELEMENTS OF A FINITE GROUP

C. Y. HO

ABSTRACT. Let G be a finite group, p a prime, and x a p-element in G. An element g in G is called a witness of G if the subgroup generated by x and g is a p-group. The set of all witnesses of x in G is denoted by $W(x)$. This paper shows that x belongs to a given Sylow p-subgroup P of G if one of the following holds: (1) G is p-solvable and $W(x) \supset P \cap\left\{x^{g} \mid g \in G\right\}$; (2) G is p-solvable, $P=\langle P \backslash Z(P)\rangle$, and $W(x) \supset P \backslash Z(P)$; (3) $\mathrm{cl}(P) \leq 2$ and $W(x) \supset P$; (4) x normalizes a subgroup P_{1} of P with $\left|P: P_{1}\right| \leq p^{2}$ and $W(x) \supset P ;(5)|P|=p^{4}$ and $W(x) \supset P$.

1. Introduction and notation. Let G be a finite group, p a prime number, and x a p-element in G. An element g in G is called a witness of x if the subgroup generated by x and g is a p-group. The set of all witnesses of x in G is denoted by $W(x)$.

It is interesting to know how $W(x)$ reflects the property of x. For example, it is interesting to see which property of $W(x)$ will imply that x belongs to the maximal normal p-subgroup of G, and which property of $W(x) \cap H$ will imply that x belongs to H, where H is a given p-subgroup of G.

When $W(x)$ contains the conjugacy class of x, Baer's the orem tells us that x belongs to the maximal normal p-subgroup of G.

This paper will show that x belongs to a given Sylow p-subgroup when certain conditions are imposed on the Sylow p-subgroup and $W(x)$. This is summarized in

Theorem 1. Let G be a finite group and P a Sylow p-subgroup of G. For $x \in G$, if one of the following bolds, then $x \in P$.
(1) G is p-solvable and $W(x) \supset P \cap\left\{x^{g} \mid g \in G\right\}$.
(2) G is p-solvable, $P=\langle P \backslash Z(P)\rangle$, and $W(x) \supset P \backslash Z(P)$.

Received by the editors November 12, 1973 and, in revised form, January 28, 1974. AMS (MOS) subject classifications (1970). Primary 20F45, 20F15; Secondary 20F03.

Key words and phrases. Largest solvable normal subgroup, center, nilpotent, nilpotent class, Fitting subgroup, Frattini subgroup, p-solvable, simple group, socle, Sylow p-subgroup, witness.
(3) $\operatorname{cl}(P) \leq 2$ and $W(x) \supset P$.
(4) x normalizes a subgroup P_{1} of P with $\left|P: P_{1}\right| \leq p^{2}$ and $W(x) \supset P$.
(5) $|P|=p^{4}$ and $W(x) \supset P$.

Some examples are given in the final section which show that the conclusion of Theorem 1 becomes invalid when the stated conditions are relaxed.

All groups in this paper are assumed to be finite. Our notation is standard and taken mainly from [1]. In particular, let G be a group. Then $\operatorname{Soc}(G), \operatorname{Sol}(G), O_{p}(G), F(G), \Phi(G), \exp (G)$ and G^{\prime} denote respectively the joint of all minimal normal subgroups, the largest solvable normal subgroup, the maximal normal p-subgroup, the Fitting subgroup, the Frattini subgroup, the exponent and the commutator subgroup of G. Moreover, for any nilpotent group $G, \mathrm{cl}(G)$ denotes the nilpotent class of G.
2. Proof of Theorem 1. Suppose X is an arbitrary finite group. If $\operatorname{Sol}(x)=1$, then it is well known that $C_{X}(\operatorname{Soc}(X))=1$. This can be seen from the following. Since $\operatorname{Sol}(X)=1, \operatorname{Soc}(X)=S_{1} \times \cdots \times S_{n}$, where each S_{i} is a nonabelian group. Thus $C_{X}(\operatorname{Soc}(X)) \cap \operatorname{Soc}(X)=1$. However, $C_{X}(\operatorname{Soc}(X)) \triangleleft X$ which, together with the fact that $\operatorname{Sol}(X)=1$, implies $C_{X}(\operatorname{Soc}(X))=1$.

We use induction on $|G|$ to prove Theorem 1; assume that Theorem 1 is false. Hence $O_{p}(G)=1$ and $G=\langle P, x\rangle$. Let K be the conjugacy class containing x and let S be any minimal normal subgroup of G. By induction we can see that $G=P S=S P$. Let $B(x)=\{X \mid X=\langle x, A\rangle$ is a p-group and $A \supset P\}$. Choose $R \in B(x)$ such that $|R \cap P|$ is of maximal order.

Cases (1) and (2). Since G is p-solvable and $O_{p}(G)=1, S$ is a normal subgroup of order relative prime to p. Let $x^{s} \in K \cap P$ for some $s \in S$. If $P \cap K \subset W(x)$, then $\left\langle x^{s}, x\right\rangle$ is a p-group. However $x^{-1} x^{s}=$ $[x, s] \in S$. Therefore $W(x) \supset P \cap K$ implies $[x, s]=1$, and so $x=x^{s} \in P$. This proves (1).

Now suppose Case (2) occurs. For $g \in G$, we have $g=a(g) \cdot b(g)$, where $a(g) \in S$ and $b(g) \in P$. Hence $x^{g} \in P \backslash Z(P)$ if and only if $x^{a(g)} \in P \backslash Z(P)$. Since $[x, a(g)]=x^{-1} x^{a(g)} \in S, K \cap P \subset Z(P)$. Hence $\left[x^{s}, y\right]=1$ for all $y \in P$. As

$$
\left[x^{s}, y\right]=[x[x, s] y]=[x, y]^{[x, s]}[[x, s], y]
$$

$[x, y]=\left([[x, s], y]^{-1}\right)^{[x, s]^{-1}}$. Since $S \triangleleft G$ and $W(x) \supset P \backslash Z(P),[x, y]=1$ for all $y \in P \backslash Z(P)$. As $\langle P \backslash Z(P)\rangle=P,[x, P]=1$, which is impossible. This contradiction completes the proof of Case (2).

Case (3). By (1) we may assume that $\operatorname{Sol}(G)=1$. Hence $\operatorname{Soc}(G)=S$. Let $F=\{[y, x] \mid y \in P\}$. If $F=1$, then $x \in P$. Therefore $1 \neq$ $\langle F\rangle \subset C_{G}(x)$. For any $y, z \in P$, we have $[y, x]^{z}=[y z, x][z, x]^{-1}$. This shows $P \subset N_{G}(\langle F\rangle)$. Hence $\langle F\rangle \triangleleft G$. Since $\operatorname{Sol}(G)=1, C_{G}(\operatorname{Soc}(G))=1$. Thus $S \subset\langle F\rangle$. Now $x \in C_{G}(S)$ implies $x=1$. Of course $1 \in P$, a contradiction. This completes the proof of (3).

Case (4). The case $\left|P: P_{1}\right|=p$ is trivial. Hence we may assume that $\left|P: P_{1}\right|=p^{2}$. Therefore there exists an element $y \in N_{P}\left(P_{1}\right) \backslash P_{1}$ such that $\langle x, y\rangle$ is a p-group. Since $\langle x, y\rangle \subset N_{G}\left(P_{1}\right),\left\langle x, y, P_{1}\right\rangle \in B(x)$. So $|R \cap P| \nsucceq\left|P_{1}\right|$. This shows that $R \cap P$ is a maximal subgroup of any Sylow p-subgroup containing it. Clearly x normalizes $R \cap P$ and an application of (3) completes the proof of (4).

Case (5). By (3) and (4) we may assume that $c l(P)>2$ and $|R \cap P| \ngtr p^{2}$. Therefore $P^{\prime} \not \subset Z(P), P^{\prime}=\Phi(P)$, and $P / P^{\prime} \simeq Z_{p} \times Z_{p}$. Suppose $\exp (P)=p^{2}$. Let $y \in P$ be an element of order p^{2} and let $D=\langle y\rangle$. We may assume that $R \cap P=D$. Suppose $x \in N_{G}(D)$. Let $y_{1} \in N_{p}(D) \backslash D$. Then $\left\langle x, D, y_{1}\right\rangle \in B(x)$, which violates the maximality of R. Therefore $x \notin N_{G}(D)$, and $R=\langle y, x\rangle$ is a Sylow p-subgroup of G. Let $N=N_{R}(D)$. Then $N \neq R$ and $N \nsupseteq D$. Since $N^{x}=N$ and $|N|=p^{3}, D \cap D^{x}=E$, where E is the unique subgroup of order p in D. So x centralizes E. If $D \triangleleft P$, then $E \subset Z(P)$, which implies $E \subset Z(G)$, a contradiction. So $D \nless P$. Let $N_{1}=N_{P}(D)$ and let $u \in P \backslash N_{1}$. Then $N_{1}=N_{1}^{u}$ and so $D \cap D^{u}=E$. This implies $E \subset Z(P)$ which is impossible. Hence $\exp (P)=p$. If $p=2$, then P is abelian, a contradiction. Hence p is odd. Let A be a maximal abelian subgroup of P containing P^{\prime}. If $A \neq P^{\prime}$, then $A \cong Z_{p} \times Z_{p} \times Z_{p}$, and $P=A\langle y\rangle$ with $y^{P}=1$. We can view A as a 3 -dimensional vector space over the finite field of p-elements, and y a linear transformation on A. With respect to a suitable basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of A, y^{-1} has the matrix representation

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Hence $v_{1}^{y^{-1}}=v_{1} v_{2}$ and $v_{2}^{y^{-1}}=v_{2} v_{3}$. So

$$
\begin{aligned}
\left(y v_{1}\right)^{p} & =\left(y v_{1} y^{-1}\right)\left(y^{2} v_{1} y^{-2}\right) \cdots\left(y^{(p-1)} v_{1} y^{-(p-1)}\right) y^{p-1} \cdot y v_{1} \\
& =v_{1}^{y-1} \cdot v_{1}^{y-2} \cdots v_{1}^{y-(p-1)} \cdot v_{1}
\end{aligned}
$$

Let $z=y^{-1} \dot{p}$ Using the linear transformation notation, from $z=1$, we see that $v_{1}^{(z-1)^{p}}=1$. Therefore

$$
1=v_{1}^{z+z^{2}+\cdots+z^{p-1}+1}=\left(v_{1}^{(z-1)}\right)^{-1}=v_{2}^{-1} .
$$

This is impossible. Hence P^{\prime} is a maximal abelian subgroup of P. So $P^{\prime}=C_{P}\left(P^{\prime}\right)$, and P / P^{\prime} is isomorphic to a subgroup of Aut $\left(P^{\prime}\right)$. Since the Sylow p-subgroup of $\mathrm{Gl}(2, P)$ has order $p,|P|=p^{3}$, a contradiction. This completes the proof of (5).

Remark. The proof of (5) also shows that a p-group P of order p^{4} with $\exp (P)=p$ is not of maximal class.

A stronger version of (3) in Theorem 1 is the following.
Proposition 1. Let H be a nilpotent subgroup of a finite group G and let $x \in G$. If for any $t \in H,\langle x, t\rangle$ is a nilpotent group of nilpotent class not greater than 2, then $\langle H, x\rangle$ is nilpotent.

Proof. We apply induction to $|G|$. We may assume that $G=\langle H, x\rangle$. Let S be a minimal normal subgroup. By induction, G / S is nilpotent. Set $F=\{[t, x] \mid t \in H\}$. For any $t_{1}, t_{2} \in H$ we have $\left[t_{1}, x\right]^{t} 2=\left[t_{1} t_{2}, x\right]\left[t_{2}, x\right]^{-1}$. Therefore $\langle F\rangle \triangleleft G$ and $x \in C_{G}\langle F\rangle$. If $F=\{1\}$, then the conclusion of the proposition holds. Hence we may assume $F \neq\{1\}$.

Suppose $\operatorname{Sol}(G)=1$. Then $S=\operatorname{Soc}(G)$. Since $C_{G}(\operatorname{Soc}(G))=1$ and $\langle F\rangle \triangleleft G, S \subset\langle F\rangle$. Therefore $x \in C_{G}(S)$, and so $x=1$. Of course $\langle H, x\rangle$ is a nilpotent group in this case.

If $\operatorname{Sol}(G) \neq 1$, then we may assume that S is an elementary abelian p-group. Therefore G is solvable. By induction we may assume that $S=F(G)$. By [1, p. 218], $C_{G}(S)=S$. Therefore $S \subset\langle F\rangle$, and so $x \in S$. Hence $G=H S$. For any prime number $q \neq p, x$ centralizes every q-element of H. Since H is nilpotent, H is a p-group. Hence G is a p-group. This completes the proof of Proposition 1.
3. Some examples. If we remove the condition $\langle P \backslash Z(P)\rangle=P$ in (2) of Theorem 1, then any G with more than one nontrivial abelian Sylow p-subgroup will be a counterexample. The following is a less trivial example in this direction.

Example (a). Let V be a 3-dimensional vector space over the field F with four elements. Choose a basis for V which we use to identify the elements in $\mathrm{Gl}(V)$ by its representing matrices. Let

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
f & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $f \in F \backslash\{0,1\}$ and $f^{3}=1$. Then $A^{3}=B^{3}=1$ and $\langle A, B$, is a 3-group. Let $G=$ $V\langle A, B\rangle$ be the semidirect product of V and A, B such that for $v \in V$ and $T \in\langle A, B\rangle$, v^{T} is defined to be $v+v(T-1)$. In G we use the multiplicative notation. Let

$$
C=B^{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)
$$

After a short calculation we see that

$$
C_{V}(C) \cap\left[\left(C_{V}(A) \backslash C_{V}(C)\right) \cdot\left(C_{V}(B) \backslash C_{V}(C)\right)\right]
$$

is not empty. Let $v_{1} \in C_{V}(A) \backslash C_{V}(C), v_{2} \in C_{V}(B) \backslash C_{V}(C)$ and $v_{1} v_{2} \in C_{V}(C)$. Hence $1=\left[v_{1} v_{2}, C^{-1}\right]=\left[v_{1}, C^{-1}\right]^{v} 2\left[v_{2}, C^{-1}\right]$. Since V is an elementary abelian 2-group, $\left[v_{1}, C^{-1}\right]=\left[v_{2}, C^{-1}\right]$. Let $v=\left[v_{1}, C^{-1}\right] \neq 1$. Then $\langle v C, C\rangle$ is not a 3-group. But $\langle v C, A\rangle^{v_{1}}=\left\langle v C^{v} 1, A\right\rangle=\left\langle v\left[v_{1}, C^{-1}\right] C, A\right\rangle=\langle C, A\rangle$ is a 3-group. Similarly $\langle v C, B\rangle^{v} 2=\langle C, B\rangle$ is a 3-group. This shows that although $\langle v C, A\rangle,\langle v C, B\rangle$ are 3-groups and $P=\langle A, B\rangle$ is a Sylow 3-subgroup of $G, v C \notin\langle A, B\rangle$. Of course G is 3-solvable. Since $Z(\langle A, B\rangle)$ $=\left\langle B B^{A} B^{A^{2}}\right\rangle, P=\langle P \backslash Z(\langle A, B\rangle)\rangle$. Also $|P|=3^{4}$ in this example. Therefore it can be used to show that if we replace the stated condition in (5) by $W(x)$ which contains some set of generators of P, then the conclusion is false.

Example (b). Let p be a prime and let F be the finite field with p elements. Let G be the group of all 3×3 invertible matrices with determinant 1 over F.

Suppose

$x=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad y=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad$ and $\quad z=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$.

Then $G=\langle x, y, z\rangle$ and $P=\langle y, z\rangle$ is a Sylow p-subgroup of G. Clearly $\mathrm{cl}(P)=2$. It is not difficult to see that $\langle x, y\rangle,\langle x, z\rangle$ are both p-groups. Of course $x \notin P$. This shows that if we just require that $\langle x, y\rangle$ is a p-group for y belonging to a given set of generators of P, then the conclusion of (2) might be false.

The author is indebted to Dr. S. Sidki for suggesting Example (a) in this section.

REFERENCE

1. D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 \#229.

InSTITUTE OF MATHEMATICS, ACADEMIA SINICA, REPUBLIC OF CHINA
DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE DE BRASILIA, 70,000-BRASILIA, D.F., BRASIL (Current address)

