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CONTINUOUS METRIC PROJECTIONS

JOSEPH M. LAMBERT

ABSTRACT.     An example is given of a reflexive, rotund Banach space

whose dual space is not Fréchet differentiable such that every metric projec-

tion onto closed subspaces is norm continuous.   This example shows that sev-

eral published conjectures on necessary and sufficient conditions for a reflex-

ive, rotund Banach space to have norm continuous metric projections onto all

closed subspaces are incorrect.

Introduction. If X is a reflexive, rotund Banach space, every closed sub-

space of X is a unique best approximation subspace, called a Chebyshev sub-

space. If M is a closed subspace of X, the metric projection PM associated

with  M  is defined via inf    ,.. \\x - mII =  \\x - P   ix)  .   An open question in
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best approximation theory is to find necessary and sufficient conditions on a

reflexive, rotund Banach space to insure that every closed subspace has a

norm continuous metric projection associated with it.   In [5], the conjecture

was that every reflexive and rotund Banach space had this property.   In [41,

this was later amended to be that Banach spaces with a Fréchet smooth dual

space had this property.   In [4], it was also conjectured that if the canonical

duality map from X* to  X,  restricted to M1 = {x* £ X*\x*im) = 0, Vm £ M\,

was norm continuous, then  PM  was norm continuous.   It was verified for sub-

spaces M of finite codimension in [41.   In [l], the study of bounded compact-

ness led to the continuity of PM   for those  M  such that ker PM = {x £ X|P„(x)

= 6\ was boundedly compact.   Further, if the codimension of M was finite,

then the bounded compactness of ker PM   was a necessary and sufficient con-

dition that  PM  be norm continuous.

In this paper, we show that there exists a reflexive, rotund Banach space

whose dual is not Frechet smooth and yet every metric projection is norm con-

tinuous.   This is accomplished by closely examining the space  X  exhibited

by Klee in [6], where  X  is a renorm of  ¡2,  which is reflexive, Gâteaux smooth

at all points of the unit ball except {- S0, 80\.   By well-known duality relation-

ships,  X* is a reflexive, rotund Banach space.   It is this space which will be
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shown to have the desired properties.   In §1 we will recall the Klee space,

following the notation in [6].   In §2 we recall the terminology of abstract

approximation and show that the dual of the Klee space provides an example

which exhibits a reflexive, rotund Banach space whose dual is not F rechet

smooth and yet every metric projection onto closed subspaces is norm con-

tinuous.   In §3, we show that the theorems in [41 and [l] cannot be extended

when the dimension requirements on M  ate removed.

In this paper X  will denote a Banach space and X* its continuous dual.

UiX)  and SÍX) will denote the closed unit ball in  X  and its boundary, re-

spectively.   All other notation will correspond to that in [2].   A source for

the theory of metric projections is [3, §32].

1.   The Klee space.   A renorm of  L   is given in [6] as follows.   An ele-

ment x is in  L  ii and only if x = {x.\°°=0  such that   72°l0|x¿|2 < oo.     Let

V = {x £ I   \xQ = 0\.   Let  Uv  and Sy  denote the unit ball and its boundary,

respectively, of the subspace  V.   For each bounded sequence  a = |a,|°°_

let T     denote the linear transformation of  V into  V defined by   Taix) =

(0, ax., ax, ■ ■ •), x £ V.   For each A £ [- 1, l]  and each sequence  77 =

(77,, T)2, ■••) of even functions on  [- 1, l]  to [0, l]  with rji.0) = 1  for all  i,

let 77(A) = irijiX), 272(A), • • • ).   Then let

V =    U    ^o+TvMUv1    and    Sv-   \J    [X80+Tv(x)Sv1
M-<1 A   <1

where ¿L = (1, 0, 0- • •)•   Further let  U be the convex closure of U     and

let  S be the boundary of U. Klee prescribed the following conditions on

{r¡.\ to obtain the required smoothness conditions.

Kl.   22    is continuous and concave, with 77¿(0) = 1, ry¿(l - tj = 2e¿  and

í7¿(1)= 0 for all  i.

K2.   77. is differentiable on  [0, l]  with 77/(0) = 0  and -q'Al - A = - 1

for all  2.

K3.   77- has a vertical tangent at 1,  i.e.   lim^j 77. (A) = - <*> for all   2.

K4.   it \Ai  is a sequence of real numbers such that  f. £ [0, 1/6)  with

e.—>0 as  i—>o°.
i

We wish to place a further restriction on the 77    to facilitate computation-

al problems.

K5.   For all  2,77!(A)>(1-A2)1/2.

The gauge of  U, p^   is the renorm of  l^.   The remaining facts to be re-

called for our investigation are:

Ka.   Uv ={-80,8\Ax £l2\  |%0I < 1  and S°°= /x/77 .(xQ))2 < l{.

Kb.   The intersection of S     with the half plane  G s= L + [O, As, s £Sy,

L = {AS J - 00 < A < A,  is given by {X80 + r (A) • s |  |A| < l!,  where  r,_(A)
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is the positive solution of 72°°= [t iX)s./r¡ {X)12 = 1.

Kc.   The Klee space  (X, p^)  is reflexive, Gâteaux  smooth at all points

of  U  and Frechet smooth at all points of  U except {- §n, 8A.

2.   The example.   Recall that if M  is a closed subspace of a Banach

space  Z, diz, Al) = inf 5 \\z - m\\  \m £ M\.   Let  P Miz) = {m £ Al|  ||z - 2221| =

diz, m)\.   The set valued mapping z—. P Az)  is called the metric projection

of Z  onto M.   If Pv,   is a single valued mapping,   M  is called a Chebyshev

subspace.   The set {z £Z\PfAiz) = 6\  will be denoted  ker PM.

Let (Y,   II • ||) denote  (X, Py)* where  (X, py)   is the Klee space de-

scribed in §1.   Since  (X, pA)   was reflexive and smooth, one has  (Y,   || • ||)

is reflexive and rotund.   Let M  be any Chebyshev subspace of  Y.   Let ipM:

Y\M^S(kerPM) via ifr^iy) = (y - PM(y)V||y- PM(y) II-   Further, let T:

Y*—>Y be the canonical duality given by  Ty* = \y £ y|y(y*) = \\y\\ \\y* Hi-

Theorem 13 in [14] states that if  T is continuous at / £ Si Y*) O/M   ,  then

PM is continuous at all points of the set ip^ (T(/)).   Since Y*= X, the

Klee space  T is continuous at all points of S(V*)  except Í — Sn, Sn>.

Since the continuity of P„   at all points is equivalent to the continuity of

P„   at all points in ker P„,  we need only study those points x     and those

subspaces M,   suchthat (xQ - P^Xq)/ ||x   - PMxQ ||  e T(±S0),  since  P^

would be continuous at all other points.   In particular, <5n £ M     tot such

x    afld M.   Thus if 80 4 M"1, P„   is norm continuous.   We wish to show

every  Pw   is norm continuous.   Thus we consider those subspaces  M  such

that 8Q £ M   .   We use the fact that since  (X, p¡j)   is a renorm of l2,

(Y,  || ||) can be considered a renorm of l2.

Lemma 2.1.   Given M,   a Chebychev subspace of Y such that 8Q £

M    C X,   then M1"   taken as a set in Y is contained in ker Pw.

Proof.    Let z be in ^(/M"1) C Y.   One must show that z is in ker P...
M

Now z acts as a linear functional on  X = Y* and since  X  is reflexive,  z

attains its norm on  Í7.   In particular, by use of the Krein-Milman theorem,

z must attain its norm at an extreme point and hence at a point of S   .

Thus there exists  u £ S     such that (22, z) =1.   It u £ S   D MX CX then

z £ Tu C ker P„,   since  TÍML) = ker P„,  and the result follows.   If for all

u £ S   HM   , iu, z) 4 1,   choose any  u £ S     such that (22, z) = 1.   By pre-

vious remarks in §1,  u has the form  u = Ac5Q + r (A)y,   y e s„, A 4 1.   But

y  can be written as y = x + U2,  with x  in M-1-   and 222  in  M  considered as

sets in X  since X  is a renorm of /  .   Since 8Q £ M    C X, M C V C Y.

Thus w is in  V  and hence x  is in  V.   Now,
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iu, z) = (AS   + t (A)(x + w), z) = (AS. + t iX)x, z)'0   '   'yx"'x~   '   ~" ~'       v"   O        y

since z  is in MJ".   We claim p..(ASn + r (A)x) < 1.   This follows since

1 = puiu) = £

V (A)y.'
y       J i

\iy)ix.

Z *y)

rj.iX)

x¿ + 2x .w. + w¿.

-i n.ixy

The last inequality follows from

l 27 .(A)2

Z  r2W *±
2 2XT + U/f

n.(A)=

= 1 27. iXY l-Xl

since  (x, ii/) = Sx ,i¿>   = 0 because x e MX C\V,u> £ M ClV,  and K5.   Thus

-2(A)x2 r (A)t

¿ = 1  27/-1)2 2=1    77 .(A)2

Since   22   is  not an  element  of   M  ,  w 4 0,   and hence   k <  1.

PyiAS- + r iX)x) = k < 1.   We remark that if  k = 0 then x = 6 and A = 1,  im-

plying   z = S„    and   22 =  S-,   a  contradiction.    By  considering

Thus

:-1 (AS0  + ry(A)x)

¿- HAS0 + ry(A)x, z) = k~ 1

one has   p,,(a) = 1   and   a   e M*-.    But   (a, z) =

This contradicts   ||z || = 1.   Thus there

exists  22 £S    C\MX   such that z £ Tu.   Therefore,   M1 C ker PM.     Q.E.D.

By [5, Theorem 3], if ker P„   contains a subspace  N  such that M + N

= Z,  the entire Banach space, then  P„:   Z—>/M  is linear and hence contin-

uous.   Since   Y is a renorm of /-, one can write   Y = M + M   .   The above

remarks coupled with Lemma 2.1 yield that  PM   is continuous whenever

S - £ M   .   The initial remarks in §2 showed that  P„   is continuous when-

- 4 M   .   Hence, we have the followingS

Theorem 2.1. There exists a reflexive, rotund Banach space Y such

that Y* is not Fréchet smooth, but P.. is norm continuous for all closed

subspaces   M.

This example shows that the conjecture in [41, that the necessary and

sufficient condition for a reflexive, rotund Banach space to have the metric

projections onto all closed subspaces continuous, be that the dual space

be Frechet smooth, is incorrect.
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3.   Further applications as counterexamples.  In [4], Theorem 14 states:   If

X  is a reflexive, rotund Banach space,  M  a Chebyshev subspace of finite

codimension and if T  is the canonical duality map  T:   X*—>X**= X,  then

T/M     is norm continuous if and only if  P„   is norm continuous.

It was conjectured that this theorem would also be valid without any

dimension requirements on M.   The following example shows that this cannot

be the case.

Example 3.1.   Let X be the Klee space,   Y  its dual as above.   Let M C

Y be defined as M = closed spaniS2 .|/= 1, 2, • • • I  where S    are the usual

basis vectors in  I..   Clearly the closed span of {8Q, 82j + i | / = 0, 1, 2 ■ • ■ I

is contained in M±.   Consider the sequence ix    +.}  in S(MJ") defined via

X2i+l = ^ ~ f2i' + 1^0 + 2f22 + 1^22 + l   wnere tne  íf¿í   are   as i"  ^4   in §1.    It

is easily seen that *27 + i—'^o-   ^Y an elementary calculation  T(x2+.) =

(SQ + S2¿ + 1)/(l + é2¿ + [)-   Hence T(x2¿ + 1) converges weakly to SQ, but not

in norm.   Hence  T/M1-   is not continuous, but by the work of the previous

section   Pw   is linear and continuous.

A set is boundedly compact if every bounded sequence has a convergent

subsequence.   In [l], Theorem 8 states:   If X  is a normed linear space,  M

a Chebyshev subspace of finite codimension, then ker P„   is boundedly com-

pact if and only if  P„   is norm continuous.

It was conjectured that the theorem continued to be valid without re-

striction on the dimension of M.   Using Example 3.1, we can show that the theo-

rem cannot be extended.   The set {Tix2i)\°°=Q  consists of elements of norm

one in ker P„.   However, there does not exist a norm convergent subse-

quence, and yet,   P„   is norm continuous.

It should be noted that B. Kripke of Ohio State University, in an unpub-

lished result, has found an example of a Hilbert space which can be renormed

with a rotund norm so as to contain a closed subspace  M  such that  P„   is

not norm continuous.

Finally in [l], Osman has announced necessary and sufficient conditions

for all metric projections to be continuous.   These conditions resemble con-

ditions implying Fréchet smoothness of the dual space but are slightly weak-

er.   The example in §2 gives a concrete example of such a space.
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