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AUTOMORPHISM GROUPS OF ABELIAN p-GROUPS

JUTTA HAUSEN1

ABSTRACT.    Let  T be the automorphism group of a nonelementary re-

duced abelian p-group, p > 5.  It is shown that every noncentral normal

subgroup of   T contains a noncentral elementary abelian normal p-sub-

group of   T of rank at least 2.

1. The result.   Throughout the following,  G  is a reduced p-primary

abelian group,  p > 5,  and V is the group of all automorphisms of  G.

If  G is elementary abelian then the normal structure of V is well known.

In particular,  V does not contain normal p-subgroups 4 1 [2, pp. 41, 45].  If

pG 4 0  then  V does possess nontrivial normal p-subgroups.  Moreover, in

this case, every noncentral (i.e. not contained in the center ZY of F) nor-

mal subgroup of r contains a noncentral normal p-subgroup  N of Y such

that  Np = 1 [6, Theorem A].

The purpose of this note is to prove the following result which is con-

siderably stronger.

Theorem.   Let Y be the automorphism group of a nonelementary reduced

abelian p-group,   p > 5.  Then every noncentral normal subgroup of Y contains

a noncentral elementary abelian normal p-subgroup of Y of rank at least 2.

The hypothesis  p 4 2 is indispensable since the dihedral group  D4   oc-

curs as an automorphism group of an abelian 2-group (namely  G = Z(2) ©

Z(4);   D ,  contains a [noncentral] cyclic normal subgroup of order 4 whose

socle is the center of  D ,).  Whether the above Theorem holds true for p = 3

is an open question.

2. Tools.  Notation and terminology will be that of [3] and [6] unless

explained otherwise.  Calculations involving automorphisms are carried out

in the endomorphism ring of  G.   The following facts are used frequently.

Note that mappings are written to the right.
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(2.1)  The center of Y.  The center of Y consists precisely of the multi-

plications with units in the ring  R     oí p-adic integers [1, pp. 110,  111].  If

G is unbounded then  Zr  cü R     and the center of Y contains no elements
P

of order p.  An automorphism  a of G  is central if and only if So. = S for all

subgroups  S oí  G [l, pp.  110,  111].  F is commutative if and only if  G  is

(locally) cyclic [3, p. 222].

(2.2) Stabilizers.   Let fix (S/A) be the set of all y eT inducing the

identity mapping in ß/A  where A < B are subgroups of G.  Ii A and B  are

characteristic in  G then  fix (ß/A) is a noimal subgroup of Y.  The stabilizer

of A   in  G is defined as   stab A = fix A O fix (G/A).  It is well known that

stab A  ^ Horn (G/A, A). In particular, stabilizers are abelian.

(2.3) The normal subgroups of exponent p.   Let  N be a normal subgroup

of r such that Np = 1.  Then N < 1* where W consists of all y £ Y such

that G[p](y - 1) < pG and p(y - 1) = 0 [4, pp. 409, 410].  If ifj £ W then

G(ip- 1) <G[p]  and (i/j ~ l)3 = 0 [4, p. 411].  Hence f < fix (pG) n

fix (G/G[p]) and, since  p > 3, *" = 1.

An immediate consequence is the following result.

Lemma 2.4.   // N  is a normal p-subgroup of Y such that Np = 1  then

N n fix G[p]  and N   n   fix (G/pG)  are elementary abelian normal p-subgroups

ofY.

Proof.  By (2.3) N < V, and «P n fix G[p] < stab GÍp], V n fix (G/pG) <

stab pG.  By (2.2)

stab G[p] ~ Horn (G/G[p], G[p]),       stab pG » Horn (G/pG, pG),

which are elementary abelian.

The following two lemmas are technical.

Lemma 2.5.  Let G = A © (Â)   where A  has rank at least two and pmA =

0^ pmG for some integer m>l.  Let  N be a normal subgroup of Y such

that Np = 1.  If there exists y £ N such that (y - I)2 4 0 then N n fix G[p]

is noncentral.

Proof.  Let y - 1 + r £ N such that r2 4 0. Then  Gr < G[p], pr = 0 (cf.

(2.3)), and  r   4 0  implies   Gr ¿ pG.  Since  G is generated by its elements

of maximal order, one can assume  hr   4 0.  Hence  hr £ G[p]\pG and

G = (a) © B © (h),       hr=a,      ar 4 0,        ß ^ 0.

Suppose pß = 0. Then pG = (pA)   and (pmh) >(pG)[p] > G[p]r > ((a)©B>.

Hence  ar 4 0 and  B 4 0  imply
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[a; © B = (a) © K,        Kr = 0 4  K,

In this case, pick any  0 4 x £ K.   If pB 4 0 pick  0 4 x £ (pB)[p] and

put  K = B.   In either case

G=(a)®K®(h),       04x£K[p],       xr=0.

Define the endomorphism   a of G by

ao = x,        Ko = 0,        ho = 0.

Then a2 = 0 and  Gor = (x)r = 0.  Lemma 2.6 of [7] implies 8 = 1 + to £ N.

From  h(8 - 1) = hro = ao = x 4  (h)   it follows that  8 4 ZY (cf. (2.1)). Since

G[p](8- 1)= G[p]ra < pGcr = p • (x) = 0,

8 £ N C\ fix G[p],   completing the proof.

Lemma 2.6.   Let G and N be as in Lemma 2.5 and suppose that (y-1)

= 0 for all y £ N.   If N n fix Glp] < ZY and N n fix (G/pG) < Zr then N < ZY.

Proof.  Assume by way of contradiction that there exists  y = 1 + r £

N\ZY.   Then  y 4 fix (G/pG)  and, as above, one can assume  hr 4 pG,  con-

sequently  hr £ G\.p]\pG and

(2.7) G = \a) ® B © (h),       hr = a,        0(a) = p,        ar = ¿>r2 = 0.

By hypothesis  y ¿ fix G[p]  and hence  G[p]r=^ 0.  Since  G[p] < (a) © Bip]

© (p¿>)   and  or = 0, pr = 0,  this implies the existence oí b £ B[p]\pB  such

that

(2.8) W 0.

Let  k = 2~ (p + 1).  Since p  is odd,  k  is an integer and  k and p  are rela-

tively prime.  Using (2.7), define  ß £ Y by

aß = ka+b, (B®(h))(ß-1)=0.

Note that  ¿>r/3 = br since  br £ pG <B @ (h).   One verifies that a/3-1 =

2(fl - b),  and hence

«yS-1r/S = 2(a - b)rß = -2£Vß = -2br,

bß~lrß = èr/8 = br,

hß~lrß m hrß *= aß = ka + b.
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Let 8 = yß~lyß = (1 + r)(l + ß'lrß).   Then ¿5 £ N and 5 = 1 + r¡,  where

V = r+ ß~lrß+ rß~lrß.  Since

h(8 - 1) = hr¡ = hr + hß-Xrß + hrß'lrß

» a + (ka + b) + ,(-2br) = ,(k + l)a + b - 2br

and  br £pG,  it follows that  h(8 — l) 4 (h).   Hence  8 £ N is noncentral (cf.

(2.1)) and, by hypothesis,  (8 - l)2 = 0.   From a, b £ G[p], G[p]rß-lrß <

pGß    rß = pGrß = 0,  and  r2 = 0, one obtains

0 = h(8 - l)2  =  [(k + l)a + b - 2br]r¡

=  [(k + l)a + b - 2br](r  + ß~lrß + rß~lrß)

=  [(k + l)a + b](r  + ß-hß   - {k + l)a(r  + ß~lrß) + b(r +ß~1rß

= (k +  l)(-2br)   + br +  br

= -2kbr = -2  •   2-1( p +  l) br = - br.

Hence  br - 0,  contradicting (2.8) and proving the lemma.

Corollary 2.9.   Let  G and N be as in Lemma 2.5.  // N  is noncentral

then N n fix G\_p]  or N n fix (G/pG)  is noncentral.

3. Proof.  Assume the situation of the Theorem and let N be a noncentral

normal subgroup of Y.  It was shown in [6] that cyclic normal subgroups of Y

ate  central. Hence, it suffices to show that  N contains a noncentral elemen-

tary abelian normal p-subgroup of Y.  By Theorem A of [6], every noncentral

normal subgroup of' Y contains a noncentral normal subgroup of Y of expo-

nent p.   This permits the assumption

(3.1) Np = 1.

Distinguish the following cases.

Case 1. G  is unbounded.   Then  Zr contains no elements of order p (cf.

(2.1)) and every p-subgroup 4  1  oí Y is noncentral.   Therefore, using (3.1)

and Lemma 2.4, it suffices to prove  N n fix G[p] 4  1.  Let, for n > 1 an inte-

ger,  2re = stab G[p"].   Then  £    < fix Glp] and the proof will be completed by

showing  Nnl   4 1  for some  n.   Assume, by way of contradiction, that

N n S^ = 1  for all  n > 1.  Since  N    and the S     are normal subgroups of Y

this implies  N is contained in the centralizer  CS    of 2    in  Y,  for all
n n

n > 1. By Lemma 2.1 of [5],  Cln < ZY ■  fix GÍpn]. Hence
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(3.2) N <  H  Cln <   fl   (ZY ■ fix Glp"]) = <D.
n>\ n>\

Using (2.1) and the fact that G =   \J   >1   G[p"],  one verifies that every (p £ $

induces the identity mapping in the lattice of all subgroups of  G  and hence,

(f> £ ZY.   This together with (3.2) implies  N < ZY which is the desired con-

tradiction.

Case 2.  G  is bounded.   It has been proved in [7] that G  is a bounded

group   with two independent elements of maximal order if and only if the in-

tersection  DT of all noncentral normal subgroups of Y is noncentral; and

Dr  is an elementary abelian p-group if pG 4 0 [7, Theorems 2,3].  Therefore,

one can assume that G = A © (h)   and pmG 4 0 = pmA   for some integer m >1.

Ii A  has rank at least 2, Corollary 2.9, Lemma 2.4, and (3.1) finish the proof.

Suppose that

(3.3) G=(a)®(h),        0(a) < 0(h) = pm+l.

If pa 4 0 then G[p] < pG and (3.1), (2.3), and (2.2) imply

N < »P < stab G[p]  =* Horn (G/G[p], G[p]).

Hence  N is elementary abelian and the proof is completed.

It remains to consider the case where a in (3-3) has order p. By (3.1)

and (2.3), N < 1J and the elements in W can be identified with matrices of

the form

"l pmk

J      1 + Pmn.

where 0 < k, I, n < p - I   are integers.  Hence *P has order p     and either

N - *P or N has order p  or p   .  If N = *P  then N  contains noncentral elemen-

tary abelian normal p-subgroups of Y,  for instance  stab G[p] < *P.  If N  has

order p     or p,  then N  is commutative and, because of (3.1),  N  is elementary

abelian. (Actually, the case \N\ = p   cannot occur since cyclic normal sub-

groups of r are contained in  Zr [6, Theorem B].)   The Theorem is proven.
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