AUTOMORPHISM GROUPS OF ABELIAN p-GROUPS

JUTTA HAUSEN ${ }^{1}$

ABSTRACT. Let Γ be the automorphism group of a nonelementary reduced abelian p-group, $p \geq 5$. It is shown that every noncentral normal subgroup of Γ contains a noncentral elementary abelian normal p-subgroup of Γ of rank at least 2 .

1. The result. Throughout the following, G is a reduced p-primary abelian group, $p \geq 5$, and Γ is the group of all automorphisms of G.

If G is elementary abelian then the normal structure of Γ is well known. In particular, Γ does not contain normal p-subgroups $\neq 1$ [2, pp. 41, 45]. If $p G \neq 0$ then Γ does possess nontrivial normal p-subgroups. Moreover, in this case, every noncentral (i.e. not contained in the center $Z \Gamma$ of Γ) normal subgroup of Γ contains a noncentral normal p-subgroup N of Γ such that $N^{p}=1[6$, Theorem A].

The purpose of this note is to prove the following result which is considerably stronger.

Theorem. Let Γ be the automorphism group of a nonelementary reduced abelian p-group, $p \geq 5$. Then every noncentral normal subgroup of Γ contains a noncentral elementary abelian normal p-subgroup of Γ of rank at least 2.

The hypothesis $p \neq 2$ is indispensable since the dihedral group D_{4} occurs as an automorphism group of an abelian 2-group (namely $G=Z(2) \oplus$ $Z(4) ; D_{4}$ contains a [noncentral] cyclic normal subgroup of order 4 whose socle is the center of D_{4}). Whether the above Theorem holds true for $p=3$ is an open question.
2. Tools. Notation and terminology will be that of [3] and [6] unless explained otherwise. Calculations involving automorphisms are carried out in the endomorphism ring of G. The following facts are used frequently. Note that mappings are written to the right.

Received by the editors December 26, 1973.
AMS (MOS) subject classifications (1970). Primary $20 \mathrm{~K} 30,20 \mathrm{~K} 10,20 \mathrm{~F} 15$; Secondary 20F30.

Key words and phrases. Abelian p-group, automorphism group, normal subgroups of automorphism groups.
${ }^{1}$ This research was supported in part by the National Science Foundation under Grant GP-34195.
(2.1) The center of Γ. The center of Γ consists precisely of the multiplications with units in the ring R_{p} of p-adic integers [1, pp. 110, 111]. If G is unbounded then $Z \Gamma \simeq R_{p}^{*}$ and the center of Γ contains no elements of order p. An automorphism α of G is central if and only if $S \alpha=S$ for all subgroups S of G [1, pp. 110, 111]. Γ is commutative if and only if G is (locally) cyclic [3, p. 222].
(2.2) Stabilizers. Let fix (B / A) be the set of all $\gamma \in \Gamma$ inducing the identity mapping in B / A where $A \leq B$ are subgroups of G. If A and B are characteristic in G then $\operatorname{fix}(B / A)$ is a normal subgroup of Γ. The stabilizer of A in G is defined as stab $A=$ fix $A \cap$ fix (G / A). It is well known that stab $A \simeq \operatorname{Hom}(G / A, A)$. In particular, stabilizers are abelian.
(2.3) The normal subgroups of exponent p. Let N be a normal subgroup of Γ such that $N^{p}=1$. Then $N \leq \Psi$ where Ψ consists of all $\gamma \in \Gamma$ such that $G[p](\gamma-1) \leq p G$ and $p(\gamma-1)=0[4$, pp. 409, 410]. If $\psi \in \Psi$ then $G(\psi-1) \leq G[p]$ and $(\psi-1)^{3}=0[4, \mathrm{p}$. 411]. Hence $\Psi \leq \operatorname{fix}(p G) \cap$ fix $(G / G[p])$ and, since $p \geq 3, \Psi^{p}=1$.

An immediate consequence is the following result.
Lemma 2.4. If N is a normal p-subgroup of Γ such that $N^{p}=1$ then $N \cap \operatorname{fix} G[p]$ and $N \cap \operatorname{fix}(G / p G)$ are elementary abelian normal p-subgroups of Γ.

Proof. By (2.3) $N \leq \Psi$, and $\Psi \cap$ fix $G[p] \leq \operatorname{stab} G[p], \Psi \cap \operatorname{fix}(G / p G) \leq$ stab $p G$. By (2.2)

$$
\operatorname{stab} G[p] \simeq \operatorname{Hom}(G / G[p], G[p]), \quad \operatorname{stab} p G \simeq \operatorname{Hom}(G / p G, p G)
$$

which are elementary abelian.
The following two lemmas are technical.
Lemma 2.5. Let $G=A \oplus\langle b\rangle$ where A has rank at least two and $p^{m} A=$ $0 \neq p^{m} G$ for some integer $m \geq 1$. Let N be a normal subgroup of Γ such that $N^{p}=1$. If there exists $\gamma \in N$ such that $(\gamma-1)^{2} \neq 0$ then $N \cap$ fix $G[p]$ is noncentral.

Proof. Let $\gamma=1+\tau \in N$ such that $\tau^{2} \neq 0$. Then $G \tau \leq G[p], p \tau=0$ (cf. (2.3)), and $\tau^{2} \neq 0$ implies $G \tau \notin p G$. Since G is generated by its elements of maximal order, one can assume $h \tau^{2} \neq 0$. Hence $h \tau \in G[p] \backslash p G$ and

$$
G=\langle a\rangle \oplus B \oplus\langle h\rangle, \quad b r=a, \quad \text { ar } \neq 0, \quad B \neq 0 .
$$

Suppose $p B=0$. Then $p G=\langle p h\rangle$ and $\left\langle p^{m} h\right\rangle \geq(p G)[p] \geq G[p] \tau \geq(\langle a\rangle \oplus B) \tau$. Hence ar $\neq 0$ and $B \neq 0$ imply

$$
(a) \oplus B=\langle a\rangle \oplus K, \quad K \tau=0 \neq K
$$

In this case, pick any $0 \neq x \in K$. If $p B \neq 0$ pick $0 \neq x \in(p B)[p]$ and put $K=B$. In either case

$$
G=\langle a\rangle \oplus K \oplus\langle h\rangle, \quad 0 \neq x \in K[p], \quad x \tau=0 .
$$

Define the endomorphism σ of G by

$$
a \sigma=x, \quad K \sigma=0, \quad h \sigma=0
$$

Then $\sigma^{2}=0$ and $G \sigma \tau=\langle x\rangle \tau=0$. Lemma 2.6 of [7] implies $\delta=1+\tau \sigma \in N$. From $h(\delta-1)=h \tau \sigma=a \sigma=x \notin\langle h\rangle$ it follows that $\delta \notin Z \Gamma$ (cf. (2.1)). Since

$$
G[p](\delta-1)=G[p] \tau \sigma \leq p G \sigma=p \cdot\langle x\rangle=0
$$

$\delta \in N \cap$ fix $G[p]$, completing the proof.
Lemma 2.6. Let G and N be as in Lemma 2.5 and suppose that $(y-1)^{2}$ $=0$ for all $\gamma \in N$. If $N \cap$ fix $G[p] \leq Z \Gamma$ and $N \cap$ fix $(G / p G) \leq Z \Gamma$ then $N \leq Z \Gamma$.

Proof. Assume by way of contradiction that there exists $\gamma=1+\tau \epsilon$ $N \backslash Z \Gamma$. Then $\gamma \notin \mathrm{fix}(G / p G)$ and, as above, one can assume $h \tau \notin p G$, consequently $h \tau \in G[p] \backslash p G$ and

$$
\begin{equation*}
G=\langle a\rangle \oplus B \oplus\langle b\rangle, \quad h \tau=a, \quad O(a)=p, \quad a \tau=h r^{2}=0 \tag{2.7}
\end{equation*}
$$

By hypothesis $\gamma \notin$ fix $G[p]$ and hence $G[p] \tau \neq 0$. Since $G[p] \leq\langle a\rangle \oplus B[p]$ $\oplus\langle p h\rangle$ and $a \tau=0, p \tau=0$, this.implies the existence of $b \in B[p] \backslash p B$ such that

$$
\begin{equation*}
b \tau \neq 0 \tag{2.8}
\end{equation*}
$$

Let $k=2^{-1}(p+1)$. Since p is odd, k is an integer and k and p are relatively prime. Using (2.7), define $\beta \in \Gamma$ by

$$
a \beta=k a+b, \quad(B \oplus\langle b\rangle)(\beta-1)=0 .
$$

Note that $b \tau \beta=b \tau$ since $b \tau \in p G \leq B \oplus\langle b\rangle$. One verifies that $a \beta^{-1}=$ $2(a-b)$, and hence

$$
\begin{aligned}
& a \beta^{-1} \tau \beta=2(a-b) \tau \beta=-2 b \tau \beta=-2 b \tau, \\
& b \beta^{-1} \tau \beta=b \tau \beta=b \tau, \\
& b \beta^{-1} \tau \beta=h \tau \beta=a \beta=k a+b .
\end{aligned}
$$

Let $\delta=\gamma \beta^{-1} \gamma \beta=(1+\tau)\left(1+\beta^{-1} \tau \beta\right)$. Then $\delta \in N$ and $\delta=1+\eta$, where $\eta=\tau+\beta^{-1} \tau \beta+\tau \beta^{-1} \tau \beta$. Since

$$
\begin{aligned}
h(\delta-1) & =h \eta=h \tau+h \beta^{-1} \tau \beta+h \tau \beta^{-1} \tau \beta \\
& =a+(k a+b)+(-2 b \tau)=(k+1) a+b-2 b \tau
\end{aligned}
$$

and $b \tau \in p G$, it follows that $h(\delta-1) \notin\langle h\rangle$. Hence $\delta \in N$ is noncentral (cf. (2.1)) and, by hypothesis, $(\delta-1)^{2}=0$. From $a, b \in G[p], G[p]_{\tau} \beta^{-1} \tau \beta \leq$ $p G \beta^{-1} \tau \beta=p G \tau \beta=0$, and $\tau^{2}=0$, one obtains

$$
\begin{aligned}
0 & =h(\delta-1)^{2}=[(k+1) a+b-2 b \tau] \eta \\
& =[(k+1) a+b-2 b \tau]\left(\tau+\beta^{-1} \tau \beta+\tau \beta^{-1} \tau \beta\right) \\
& =[(k+1) a+b]\left(\tau+\beta^{-1} \tau \beta\right)=(k+1) a\left(\tau+\beta^{-1} \tau \beta\right)+b\left(\tau+\beta^{-1} \tau \beta\right) \\
& =(k+1)(-2 b \tau)+b \tau+b \tau \\
& =-2 k b \tau=-2 \cdot 2^{-1}(p+1) b \tau=-b \tau .
\end{aligned}
$$

Hence $b \tau=0$, contradicting (2.8) and proving the lemma.
Corollary 2.9. Let G and N be as in Lemma 2.5. If N is noncentral then $N \cap$ fix $G[p]$ or $N \cap \operatorname{fix}(G / p G)$ is noncentral.
3. Proof. Assume the situation of the Theorem and let N be a noncentral normal subgroup of Γ. It was shown in [6] that cyclic normal subgroups of Γ are central. Hence, it suffices to show that N contains a noncentral elementary abelian normal p-subgroup of Γ. By Theorem A of [6], every noncentral normal subgroup of Γ contains a noncentral normal subgroup of Γ of exponent p. This permits the assumption

$$
\begin{equation*}
N^{p}=1 . \tag{3.1}
\end{equation*}
$$

Distinguish the following cases.
Case 1. G is unbounded. Then $Z \Gamma$ contains no elements of order p (cf. (2.1)) and every p-subgroup $\neq 1$ of Γ is noncentral. Therefore, using (3.1) and Lemma 2.4, it suffices to prove $N \cap$ fix $G[p] \neq 1$. Let, for $n \geq 1$ an integer, $\Sigma_{n}=\operatorname{stab} G\left[p^{n}\right]$. Then $\Sigma_{n} \leq$ fix $G[p]$ and the proof will be completed by showing $N \cap \Sigma_{n} \neq 1$ for some n. Assume, by way of contradiction, that $N \cap \Sigma_{n}=1$ for all $n \geq 1$. Since N and the Σ_{n} are normal subgroups of Γ this implies N is contained in the centralizer $C \Sigma_{n}$ of Σ_{n} in Γ, for all $n \geq 1$. By Lemma 2.1 of [5], $C \Sigma_{n} \leq Z \Gamma \cdot$ fix $G\left[p^{n}\right]$. Hence

$$
\begin{equation*}
N \leq \bigcap_{n \geq 1} C \Sigma_{n} \leq \bigcap_{n \geq 1}\left(Z \Gamma \cdot \text { fix } G\left[p^{n}\right]\right)=\Phi \tag{3.2}
\end{equation*}
$$

Using (2.1) and the fact that $G=\bigcup_{n \geq 1} G\left[p^{n}\right]$, one verifies that every $\phi \in \Phi$ induces the identity mapping in the lattice of all subgroups of G and hence, $\phi \in Z \Gamma$. This together with (3.2) implies $N \leq Z \Gamma$ which is the desired contradiction.

Case 2. G is bounded. It has been proved in [7] that G is a bounded group with two independent elements of maximal order if and only if the intersection $D \Gamma$ of all noncentral normal subgroups of Γ is noncentral; and $D \Gamma$ is an elementary abelian p-group if $p G \neq 0$ [7, Theorems 2,3]. Therefore, one can assume that $G=A \oplus\langle h\rangle$ and $p^{m} G \neq 0=p^{m} A$ for some integer $m \geq 1$. If A has rank at least 2, Corollary 2.9, Lemma 2.4, and (3.1) finish the proof. Suppose that

$$
\begin{equation*}
G=\langle a\rangle \oplus\langle b\rangle, \quad O(a)<O(b)=p^{m+1} . \tag{3.3}
\end{equation*}
$$

If $p a \neq 0$ then $G[p] \leq p G$ and (3.1), (2.3), and (2.2) imply

$$
N \leq \Psi \leq \operatorname{stab} G[p] \simeq \operatorname{Hom}(G / G[p], G[p])
$$

Hence N is elementary abelian and the proof is completed.
It remains to consider the case where a in (3.3) has order p. By (3.1) and (2.3), $N \leq \Psi$ and the elements in Ψ can be identified with matrices of the form

$$
\left[\begin{array}{cc}
1 & p^{m} k \\
l & 1+p^{m} n
\end{array}\right]
$$

where $0 \leq k, l, n \leq p-1$ are integers. Hence Ψ has order p^{3} and either $N=\Psi$ or N has order p or p^{2}. If $N=\Psi$ then N contains noncentral elementary abelian normal p-subgroups of Γ, for instance stab $G[p] \leq \Psi$. If N has order p^{2} or p, then N is commutative and, because of (3.1), N is elementary abelian. (Actually, the case $|N|=p$ cannot occur since cyclic normal subgroups of Γ are contained in $Z \Gamma[6$, Theorem $B]$.) The Theorem is proven.

REFERENCES

1. R. Baer, Primary abelian groups and their automorphisms, Amer. J. Math. 59 (1937), 99-117.
2. J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27-45. MR 7, 3.
3. L. Fuchs, Abelian groups, Akad. Kiadó, Budapest, 1958; republished by Internat. Ser. Monographs on Pure and Appl. Math., Pergamon Press, New York, 1960. MR 21 \#5672; 22 \# 2644.
4. J. Hausen, On the normal structure of automorphism groups of abelian p-groups, J. London Math. Soc. (2) 5(1972), 409-413.
5. , The automorphism group of an abelian p•group and its noncentral normal subgroups, J. Algebra 30 (1974), 459-472.
6. -, The automorphism group of an abelian p-group and its normal p-subgroups, Trans. Amer. Math. Soc. 182 (1973), 159-164.
7. -, Structural relations between general linear groups and automorphism groups of abelian p-groups, Proc. London Math. Soc. (3) 28 (1974), 614-630.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004

