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ABSTRACT. Commutative power-associative nilalgebras of dimen-

sion 4 and characteristic ¡^ 2 are shown to be nilpotent and all their iso-

morphism classes are determined.

The long-standing conjecture, originally due to A. A. Albert, that a

commutative power-associative nilalgebra of finite dimension over a field is

nilpotent, has recently been disproved by Suttles   [4], who gave a counter-

example of dimension 5.   This dimension is generally the best possible, for

we show here that every commutative power-associative nilalgebra of dimen-

sion 4 over a field of characteristic / 2 is nilpotent, and we determine the

isomorphism classes of all such algebras.   The proof is elementary and can-

not be significantly simplified by the use of the general results of [l] and

[2], which require, moreover, additional assumptions about the characteristic.

Throughout, A will denote a commutative power-associative nilalgebra

of dimension 4 over a field F of characteristic /= 2.   The subspace of A gene-

rated by elements u, v, w, • • • will be denoted by  (u, v, w, • • •).   Since every

x £ A  is nilpotent, the powers of x are linearly independent, so we must have

x" = 0 for n > 5; the least n such that xn = 0 for all x £ A  is called the nil-

index.   Now the product of any two elements of A can be written as a linear

combination of squares, for xy = V¿\_(x + y)   — x   — y  ].   Therefore, if the

nilindex is 2, then every product vanishes.   If it is 5, then A = (x, x , x , x )

for any x with x   /= 0.   These are trivial cases, in each of which there is, up

to isomorphism, a unique, associative, algebra.   Only the cases of nilindex

3 and 4 are of interest.

1.  Nilindex 3.   Linearizing   the   identity    (x   )x =   0    yields

2{(xy)z + (yz)x + (zx)y] = 0 for all x, y, z £ A.   Therefore, denoting right
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multiplication by x by R    we have, for all y, z £ A,

(!) R  R„ + R R    =- R    .
y     Z Z     y yz

Setting y = z = x gives

(2) R2=-2R   ,.
x 2

x

Setting y = x, z = x    in (1), and noting that x3 = 0, gives  R  R       + R   2R    =

0, which with (2) implies that R3 = 0.   Now choose any x £ A with x   ¡Í 0,

and set X = (x, x   ).   This is carried into itself by Rx, which therefore oper-

ates on the two-dimensional quotient A/X.   As   R     is nilpotent, we have

R2(A/X) = 0, so (yx)x £ X tor all y £ A, i.e., (yx)x - ax + ßx   for some a,

ß £ F.   Since R   = 0, multiplying by x shows that a = 0, after which using

(2) and the fact that  R     is also nilpotent shows  ß = 0 also.   Thus  yx   = 0,

and since every product is a linear combination of squares, this shows that

the product of any three elements of A is zero.   In particular, A is associa-

tive, so we have

Theorem 1.  A commutative power-associative nilalgebra A of nilindex 3

and of dimension 4 over a field F of characteristic /= 2 is associative, and

A3 = 0.

These algebras being associative, their classification is well known;

cf. Kruse and Price [3, Chapter VI]: If dim A    =1, then one defines a sym-

metric bilinear form on the 3-dimensional space  A/A     by choosing any x

with x   ¡¿ 0 and defining the product of the cosets of u, v £ A to be a when-

ever uv = ax   ; with respect to this form the length of x itself is clearly 1.

The problem of classifying these algebras up to isomorphism  is identical

with that of classifying such forms with the additional condition that there

be a vector of length 1.   Unfortunately, this problem is completely solved

only for certain special fields, e.g., the real and complex numbers.   If

dim A    =2, the only other possibility, then one chooses x, y £ A such that

x    and xy span A   .   Subtracting, if necessary, a multiple of x from y one

can, moreover, so choose y such that y    = ax    for some a £ F.   It is easy to

check that if one takes any other x and y with these properties, then a is

replaced by clc   for some c /= 0.   Therefore, denoting the multiplicative

group of F by F*, these algebras are parameterized by the elements of

F*/(F*)2 and 0.

2. Nilindex 4. Choose any x with x   ■/ 0 and set X = (x, x  , x  ).   We

claim  (x   , x   ) = A   .   It is sufficient to show that y2 £ (x2, x3) for all y, and
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we may further suppose  y 4 X and y    / 0, else the matter is trivial.   Set   Y =

2       3
(y, y  , y  ).   Then  X Cl V is a proper subalgebra of X, hence must be con-

2 3
tained in (x  , x   ), and is a subalgebra of Y of dimension equal to dim Y — 1

(since dim X = 3), and therefore must contain y   ; thus  y    e (x   , x   ) as as-

serted.   It follows that A  A    = 0.   Now y being arbitrary, we have  yx    e A   ,

hence  yx    = ax    + ¿»x    for some a, b £ F.   We claim a = 0.   Otherwise, set-

ting z = (l/a)(y - bx), we have zx    = x  ; computing  [(z + x  ) (z + x  )]

2 2     ?
• (z + x  ), which must vanish, we, find, using the fact that A  A    = 0, that it

is  2x  , a contradiction.   If now we replace x by x + x  , thereby replacing

2 2 3 3 3
x    by x   + 2x    but leaving x    unchanged, it follows that yx     is also a mul-

tiple of x  .   In fact, yx   = 0, for if yx3 = ax, then computing [(y + x3)2(y + x3)]

• (y + x ), which must vanish, one gets 2d x  , so d = 0.   We see now that re-
• 2

placing the original y by y - bx, for which we have (y - bx)x   = 0, one  can

so choose y such that y 4 X and yx   = yx   = 0, so yA    = 0.   The product of

2        3
any four of the elements x, x  , x   , y vanishes, and as these span A, it fol-

lows that the product of any 4 elements of A vanishes, so A    =0.   Therefore,

we have

Theorem 2.   // A is a commutative power-associative nilalgebra of nil-

•x 4 and of dimension 4 over a fie la

and there is y i A    such that yA    = 0.

index 4 and of dimension 4 over a field F of characteristic /L 2, then A    =0

The y of the theorem is not unique, but as  dim A/A    = 2, there cannot

be, modulo A   , two independent elements both annihilating A   , so y     is de-

termined up to multiplication by an element of (F*) .   As before, x will de-

note an element of A such that x3 ¡£ 0; then clearly y i (x, x   , x  ) so A =

(x, x  , x3, y).   We have the following possibilities:

1. We can so choose x and y such that yx = 0.   If y    =0 then A is
2 3 2 3

unique, the direct sum of (y)and (x, x   , x   ), and is associative.   If y    = ßx

with ß j¿ 0, setting y' = y/ß and x' = x/ß gives y'    = x'   .   This unique alge-

bra is also associative.   If y   = ax    + /3x   with a 4 0,  replacing   x   by

x + (/3/2a)x2 shows we may assume /3 = 0.  Clearly a is determined at most up

to multiplication by an element of  (F*) , and it is easy to check that another

choice of x and y replaces a by ac    for some c ^ 0, so we have a family of

algebras, all nonassociative, parameterized by the elements of F*/(F*) .

2. We cannot so choose x and y such that yx = 0.   Therefore we cannot

have yx = ßx    since x(y — ßx  ) = 0.   Choosing any x with x   /= 0, we may as-

sume that yx = yx   + Sx3 with y ¡¿ 0.   Replacing x by yx + (<5/2)x     shows we
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2 2
may so choose x such that yx = x  .   If y    =0 we have a unique nonassocia-

tive algebra.   If y    = ßx    with ß ¡¿ 0, replacing x by x/ß and y by y//3  shows

we may assume  ß = 1   and we have a unique algebra, which is not associa-

tive.   Finally, if y    = ax    + ßx   with a / 0, then as  y(y - ax) = ßx  , we

must have   (y - ax)   = 0 (else we would replace x by y - ax); the left side

is a (1 - a)x  , so a = 1.   Replacing x by x + (ß/2)x   and y by y + ßx  ,

shows we may assume ß = 0, so we have a unique algebra given by y    =
2 2 3

yx = x    and, as always, yx   = yx    = 0.   It is not associative.   This ends the

classification.   We have found one family of algebras parameterized by

F*/(F*) , and 5 individual algebras of which precisely 2 are associative.
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