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REFLEXIVE TENSOR PRODUCTS AND

SPACES OF OPERATORS

KENNETH L. POTHOVEN

ABSTRACT.    By establishing conditions for which certain tensor prod-

ucts of Banach spaces are reflexive, conditions are given for which spaces

of /c-nuclear operators, absolutely /c-summing operators, quasi k-nuclear op-

erators, and /c-integral operators are reflexive.

Let X  and Y  denote real or complex Banach spaces, and let (x.) .   .  de-

note a sequence of elements in X.   For  1 < k < oo,   define /V,((x.)    .)  or

N ix)  by
, . l/k

W«(£hl*)   ,

and define  N   ix .)  by the equation

Njx) - sup|x.|.

iel

For 1 < k < oo,   define Al,(x.) by the expression

M,(x.)=    sup    A/,(x*(x.)),
i   * i   ,     Ä l

1*1*1

where x   £ X ,  the dual of X.

Let X ® Y   represent the algebraic tensor product of X  and  Y,  and for

u £ X ® Y  define dXu)  for  1 < k < oo  by the equation

dkiu) = mi{MkliXi)Nkiy)\,

where u = £"_, x. ® y -,  the infimum is taken over all such representations

of u, k   = k/k -1   U k =4 1, k   = oo it k = 1,   and k   = 1  if k = oo.   It can be
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verified (see [6])  that  dk for   1 < k < oo  defines a norm on  X  ® Y  with

dkix ® y) = |x| |y|   for  x £ X and  y e Y.   Denote by  X  ®¿    Y the space  X ® Y

with norm  d,, and by  X  ®,    Y the completion of  X   ®,    Y.

If x   6 X    and y    eY,x   ® y    inX   ® Y    can be considered as the sca-

lar-valued linear operator on  X ® Y defined by

x* ® y* f 12 x. ® y.J = X! x*(x.)y*(y .).

For a fixed expression  u - 2™ , x. ®y. in  X   ® Y ,  define  <¿ («)  for

1 < & < oo as the least constant  C (finite or infinite) satisfying the inequality

;=i

*(¿-®yJ <cdk(ix.®yj

for all expressions  S"=1 x. ® y.  in  X  ®,    Y.   It can be shown that  d,   de-

fines a norm on  X    ® Y    with  <^.(x   ® y ) = |x  | |y  |.  d,   is called the asso-

ciate norm of d,,  and clearly  X    ® ,» Y    is a normed linear subspace of

(X ëdk Y)*.
In a similar fashion, an element  x ® y (hence an element S"_. x. ® y .)

in  X ® Y can be considered as a scalar-valued operator on  X    ® Y    by means

of the equation

/ m \ m

x®y f £ x*®y*j = £ **(*)y*(y)-

Denote by  o! (z¿)  the "norm" of an element  u - S"   ,  x. ® y. in  X <8> Y con-
J k. Z = I Z '   Z

sidered as an element of  (X    ® ,'  Y  ) .  It can also be verified that  d,   de-

tines a norm on  X ® Y and  dAu) < dXu) for u £ X ® Y.   Moreover if X  or  Y

satisfies the metric approximation property (m.a.p.) (see [l, pp. 164—181]),

then Hkiu) = dkiu) for u £ X ® Y  (see [6]).

It should be noted that  d. = rr,  the greatest crossnorm of Schatten [5].

The following facts, whose proofs can be found in [61,  show the relation-

ships between  X  ® ,    Y  and certain spaces of operators.

(1) (X ®¿fe Y)* is isometrically isomorphic to Sk (X, Y*), the space of

absolutely k -summing operators from  X to  Y    (see [61).

(2) Y   ®,   X    is isometrically isomorphic to  N,iX, Y) if  Y  or X    satis-

fies the approximation property (a.p.), where  /V,(X, Y) denotes the space of

fe-nuclear operators from  X to  Y.
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(3) X    ®¿'   Y  is isometrically isomorphic to  QN AX, Y), the space of

quasi k -nuclear operators from  X to   Y,  if  X    or  Y  satisfies the m.a.p.

(4) (X    ®,'   Y)    is isometrically isomorphic to  7,(Y, X    ),  the space of

fe-integral operators from Y to  X    .

Lemma 1.   Let X and Y  be Banach spaces with  X or Y  satisfying the

m.a.p.   The following statements are equivalent.

(a) X   ®,    Y  is reflexive.

(b) X    ®d>  Y    is reflexive.

(c) iX  ®d    Y)* = X* ®y   Y* and (X* ®y   Y*)* = X  ®rf    Y iisometrically).

Proof.  Since  X    ®,»   Y    isa subspace of (X  ® ,    Y) ,  statement (a) triv-

ially  implies  statement (b).  Now suppose statement (b) holds.  Since  d,=d,

when  X or  Y satisfies the m.a.p.,  X  ® ,    Y can be isometrically embedded in-

to (X    ® ,'   Y )    by a mapping  h.  Hence with   i and  /' representing the ob-

vious isometries, and h    denoting the adjoint of h,  the following diagram

commutes.

X* ®,,   Y*
dk

\

_  (X ®     Y)*
dk

ix* ,   Y*Y

For each  u £ (X   ®,    Y) ,  there exists an element  v in  (X
*<*fc "¿k

Y*)*

that h iv) = u and  \v

isometric isomorphism.  This means both   i and h  ate isomorphisms.  Hence

u\.  Thus if  X    ®,'   Y    is reflexive, then  j is an

X* ® ,, Y* = (X ®,    Y)*    and    (X* &_,,   Y*)*=X <?,   Y.
k k k «

Note that if  X    ® ,'   Y    is reflexive, then  / is an isometric isomorphism

and, hence,   ¿ must be an isometric isomorphism.  Hence  (X ®¿    Y)    is re-

flexive, which implies that  X  ® .    Y  is reflexive.

Finally, by taking the duals on both sides of the first equation in (c) and

using the second equation, statement (c) is seen to imply (a). This concludes

the proof.

Note that if  X and   Y  are reflexive Banach spaces and  X  or   Y satisfies
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the a.p., then using the facts stated above, condition (c) of the proposition

becomes

(*)   Sk iX, Y*) = QNk'iX, Y*)  and Nfe(Y*, X) = 7fe(Y*  X)  (isometrically).

However, Persson in [3] has proved that, for  1 < k < oo,  if  X is reflexive

then

(**) SkiX, Y) = QNkiX, Y)  and  NkiX, Y) = 7^(X, Y)  (isometrically) for

any Banach space   Y.   Therefore with this information and the above proposi-

tion, one obtains

Proposition 2.  If X 4 0 and Y 4 0  are Banach spaces with  X or   Y

satisfying the m.a.p., then the following are equivalent for  1 < k < oo.

(a) X and Y are reflexive.

(b) X  ®,   Y is reflexive.

(c) SkiX, Y)  is reflexive.

(d) QNkiX, Y)  is reflexive.

(e) 7,(X, Y)  is reflexive.

(f) NkiX, Y)  is reflexive.

Proof.  Since  X and   Y are subspaces of each of the spaces in parts (b)

through (f), each of the statements (b) through (f) implies (a). Now suppose

(a) is true.  Then (b) is true by condition   (*)   and Lemma 1.  (c) is true since

SkiX, Y) is the dual of  X  ®¿ ,   Y*,  (d) is then true by  (**).    (f) is true by

fact (2) and, hence, (e) is true by (**).

In the case  d,-n   (when k = l),  a different result is obtained.

S°°iX, Y    ) = BÍX, Y    ),  the space of all bounded linear operators from  X

to  Y    ,  and  QN^iX, Y    ) = K(X, Y    ),  the space of compact operators from

X to   Y     (see [4, p. 56])  provided  X    or   Y      have the a.p. Also when Y is

reflexive,  N,(Y    , X) = 7j(Y     , X).  Hence, using Lemma 1, one obtains

Proposition 3.  Let X and Y be reflexive Banach spaces with X or Y

satisfying the m.a.p.   Then  BÍX, Y)  is reflexive if and only if each operator

T: X —► Y is compact (see also [2]).

From the case when  k = + oo,  since S  (X, Y) = QN A\X, Y)  when  X is

reflexive, condition  ( *)  indicates

Proposition 4.   If X and Y are reflexive Banach spaces with X or Y

satisfying the m.a.p. then the following statements are equivalent.

(a) X ® ,    Y  is reflexive.
oo

(b) NjY*, X) = IJY*. X).

(c) S\X, Y*)  is reflexive.
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(d) QN^X, Y*)  is reflexive.

(e) Nj,Y*, X)  is reflexive,

it)  IJ,Y*, X)  is reflexive.

In [4, p. 57] it is verified that N J.H v 772) = lJ.Hv 772)  if 77 j and H 2

are Hubert spaces.  However  X ® ,    Y is reflexive for  X and   Y  other than
r «oo

Hubert spaces.  Since

(a) dx is equivalent to  dk for  2 < k < °° on  7/ ® F,  where 77  is a Hu-

bert space and  F is an arbitrary Banach space (see [6, p. 95]),  and

(b) dk is equivalent to  d^ toi 2 < k < oo on  Lpi¡j.) ® F for  1 < p < 2,

where /z is a (Radon) measure on a locally compact space and  F is any

Banach space (see [6, p. 97]),

any one of the equivalent statements of Proposition 4 holds when  X is a

Hilbert space or a space  Lpip)  toi  1 < p < 2  and   Y  is any reflexive space.
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