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wtt-COMPLETE SETS ARE NOT NECESSARILY tt-COMPLETE

A. H. LACHLAN

ABSTRACT,   A recursively enumerable set is constructed which is

complete with respect to weak truth-table reducibility but not with re-

spect to truth-table reducibility.   In contrast it is also shown that, when

bounded weak truth-table reducibility is defined in the natural way,

completeness with respect to this reducibility is the same as that with

respect to bounded truth-table reducibilityr

Truth-table (tt-) reducibility and bounded truth-table (btt-) reducibility

were defined in Post [6], and weak truth-table (wtt-) reducibility was de-

fined in Friedberg and Rogers [l].   Intuitively a set of natural numbers   A

is wtt-reducible to a set of natural numbers  B if firstly there is an algorithm

U for deciding    "«   £ A" given the answers to certain questions of the form

"?77 £ B?",  and secondly there is a recursive function  / such that when (l

is applied to 72,  then every 722, for which   "722 e B?"  is posed, is in  D,...,

the finite set with canonical index  f{i).   If there is a bound on the cardin-

ality of  t9,, ..  then we say  A  is  bounded v/tt-reducible (or bwtt-reducible)

to  B.   In  [l] it was shown that  wtt-completeness is not the same as com-

pleteness for r.e. sets.   In  [2] it was shown that  wtt-reducibility and  tt-

reducibility are not the same when restricted to r.e. sets.   In [4] can be

found an investigation of the  wtt-degrees of r.e. sets.

As is clear from the title, the particular concern of this paper is to show

that a wtt-complete set need not be  tt-complete.   In addition, following the

method of [3], we show that a bwtt-complete set is btt-complete.   Finally

we remark that the simple set constructed in Post [6], and shown by Martin

[5] to be complete, may or may not be tt-complete.

Unexplained terminology or notation is taken mainly from [7].   Some-

times we write  exp(2, x) fot  2X.

Construction of a wtt-complete set which is not tt-complete.   Let

( tfr.: i e N )  be an acceptable numbering of the binary p.r. functions.   Let

K denote a fixed creative set.   A tt-condition is a Boolean combination of
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atomic statements   "22 £ X"  where  n £ N.   If $ is a  tt-condition, we say

<ï> is true of B C N if we get a true statement by substituting   B fot  X.

Adopt some fixed canonical indexing of all  tt-conditions.    For   B C N,  let

&{n, B) be   1 or 0 according as the  tt-condition with index  27  is true of  S

or not.

In stages  0, 1, 2, • ••   we shall effectively enumerate   W C N and

T C N x N.   The set of numbers enumerated in   W by the end of stage  s is

denoted  W  .   At the same time we shall be effectively enumerating   K with-

out repetitions, at most one member in each stage, such that there are infi-

nitely many   stages including stage  0 in which no number is enumerated in  K.

Also we shall be computing all the values of all the p.r. functions  \fj..

Let k be a recursive function to be specified later. Before beginning

the construction we choose a strictly increasing recursive function / such

that for all  77,

fin) - fin - 1) > exp(2, k{n) ■ exp(2, fin - l))),

where  /(- l) = 0 by convention.   Let  l{n) = \x: f{n - l) < x < f{n)\,  J(n) =

I{0) U 1(1) U • • •  U l{n) and  /(- l) = 0.   W will be enumerated in such a way

that if x and y ate both in I(n), x < y, and y £W , then x £ W    also.   At each

stage s we define an equivalence relation E    on N with the following properties:

(i) E    is nondecreasing with  5  as a set of pairs; (ii) each equivalence class

of  E    is a subinterval of one of the intervals  l(n); (iii)  if  E (x, y)  and

x £ W  , then y £ W  ;  (iv) there is a number  7  which can be found effectively

from  s such that \n\ is an equivalence class of E    for all 77 > j.

From (ii) and (iii) we can write "E t (l{n) - W )" without ambiguity.

Let  g{n, j) denote the  (/' +■ l)th distinct value, as  s  increases, of

pin, s) = I + [number of equivalence classes of  E   r ilin) - W )].

We shall ensure that if   g{n, j) exists, that is, if p(n, s) has at least 7 + 1

different values, then

(1) gin, j) > exp(2, ik{n) - j) . exP(2, fin - l))).

Later this inequality will be used to show that the number of equivalence

classes of £   f (/(«) — W ) is always > 1, i.e., that  l(n) - W    is never empty.

The requirements that we wish to satisfy in the construction are:

(l   :  if  e is enumerated in  K,  then   subsequently  some member of

/(e)  is enumerated in  W;

J   :  there exists  x such that either ifj {e, x) is undefined or   ( e, x )   £

T~ Siifieie, x); W) =0,
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where  e runs through  N.   The satisfaction of the requirements  (l     will

ensure that   K <        W,    while the satisfaction of the requirements  j     will
— wtt ^ e

ensure that   T A      W.   Immediately after stage  s we shall have a target

value for  x in  S  ,  which we denote  h(e,   s).   We now state the construction.

Stage 0.   Let  h(e, 0) = 0  for all  e  and  E Jx, y) hold iff x = y.   Enum-

erate in   W each member of the range of /.

Stage  s + 1.   There are three cases.

Case 1.   Some number  e  is enumerated in   K.   Let 72 be the least

member of  /(e) - W    if any.   Enumerate in   W each  x such that  E  {x, n).

Let  E   +. = E  .   Let  h(y, s + 1) = h{y, s) for  y < e,  and let  h(y, s + 1) =

My, s) + 1  ií  y > e.   Note that (1) is certainly preserved in this case.

Case 2.   No number is enumerated in   K,  but for some number  e we want

to "attack"  J     in the sense that t/f (e, h(e, s)) has already been computed,

and either  J     has not been attacked before, or since it was last attacked
e

either J . has been attacked for some  i < e or some number <e  entered   K.
2

Choose the least such  e; we attack J     as follows.   Let k  be the least
' e

number such that all the numbers referred to by the  tt-condition with canon-

ical index xfj (e, h(e, s)) lie in  ]{k).   Below we abbreviate 0(¡/> (e, hie, s)), X)

to ®(X).   We now form  E    .,   and   W   .,   simultaneously as follows.   Firstly,
s +1 s +1 ' ' '

let

Es + 1r (/(e -Au{N- /(A))) = Es l {Jie - 1) U {N - }{k))).

Next we define  E   +AI{i) for  e < i < k  and simultaneously enumerate some

members   of I(i) in  W by descending induction on  i.   Let  2 > e,  and

F   +. l/(/) have been defined already for all 7, z < 7 < A    As part of the

induction hypothesis we assume that we have already ensured that ®{W)

depends only on  W D J(i).   Let 22    be the greatest member of l(i) n W(s).

Let n .,•••, n    be an enumeration in increasing order of those numbers

72 £ l(i) - W    such that for some equivalence class   C   of  E , n = max C.

There are  < exp(2, f(i - 1)) possibilities for   W Cl ]{i - 1).   It follows that

there is a subsequence  p  , • ■ • , p    of  (n .: i < q)   such that for any  7,   /

with j < I < r,  and any possible   W,

®(iW - Iii)) u ix: f{i - 1) < x < p.]) = @((W - I{i)) U [x: /(/ - 1) < x < p¡\),

and

(2) r + 1 > (o + l)/exp(2, exp(2, /(i - 1))).

Now define  Es+lH{i) by letting   Ej+1(x, y) hold iff
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pj[_j <r8tx<p.] = pj[j < r & y < p.].

At the same time enumerate in   W all members of  l(i) which are  <P0.   It

should be clear that S{W) now depends only on   W O ]{i - 1) because the

remaining possibilities for  W O /(/) are those of the form  \x: f{i - 1) < x <

v \

From the way   E     .   is defined, it follows that 0(W) depends only on

WC\ ]{e - 1).   Thus we enumerate   ( e, h(e, s) )   in  T or not so as to ensure

that   (e, h{e, s))   eT«-»®^  + ) = 0.    Hence 3"    will be satisfied provided

w njie- i) = Ws nj{e- i).S

Finally to complete stage  s + 1   in this case, we let  h{y, s + 1) = h(y, s)

for  y < e  and k{y, s + 1) = ¿(y, s) +  1  for  y > e.    It should be noted that the

inequality (1) is preserved in this case because of the inequality (2).

Case 3.   Otherwise.   Let   E        = F  , hiy, s + l) = h{y, s),  and enumerate

nothing in   W or  T at this stage.

This completes the construction which is obviously effective.   Note from

Case 2 that if J     is attacked in stage  s + 1   and also in stage  s    +1,  where

s' > s,  then there exist  /  and   i < e  such that  s < t < s',  and at stage  / + 1

either  i is enumerated in   K or J .  is attacked.   Let  a(i) = 1 + (the number

of times  J .  is attacked).   By induction it is easy to show that   a(i) < 2      .

Now let A(z') = 21+2  so that A(z') > 1\a{j): j < i\.   Since p(n, s + 1) 4 p{n, s)

implies that either  72  is enumerated in   K at stage  s + I  or J . is attacked for

some   i < 22,   there are  <A(?2) + 1  distinct values of p{n, s).   From (1) we now

have  p(t2, s) > 2 for all  s.   From Case  1 of the construction it immediately

follows that each of the conditions (C    is satisfied.
22

It remains to show that all the requirements  J     are met.   Consider a
1 e

particular e.   One may easily see that  h(e, s + 1) 4 h(e, s) fot at most a

finite number of values of  s.   Let the final value of h{e, s) be denoted by

h{e).   Suppose there is no stage  s + 1  with  h{e, s) - h{e) at which  J     is

attacked.   Then if/{e, h{e)) is undefined.   Now suppose there is such a stage

s + 1; then from the occurrence of Case 2 at that stage,

(e, h(e))  £ T <-*®iifrie, Me)),  ^+1>» 0,

and further   © {ipie. Me)), W) depends only on   WO ]{e - 1).   Also, if

W +1 F\ ]{e - l) 4 W O  }{e - 1),   then for some  i < e either  i is enumerated

in   K or J . is attacked at stage   / + 1,  and in both these cases  h{e, t + l) =

Me,  /) + 1 which means that  t < s.   We conclude that J    is satisfied.

wbtt-complete sets are btt-complete.    As above let   K be a fixed creative

set.   A sequence   (F.: i £ N)   of finite sets is said to be strongly r.e. if



wtt-COMPLETE SETS ARE NOT NECESSARILY  «-COMPLETE 433

x £ F    is a binary r.e. relation and the cardinality of  F . is a recursive func-
y ' ' i

tion of  i.   Call  B C N wbtt-complete it  B  is r.e. and there is a strongly r.e.

sequence   (F.: i £ N)   of finite sets all of the same power and a Turing reduc-

tion ü of K to B  such that in determining via 5\ whether i £ K one need

pose the question   "tz £ B?"  fot at most those numbers  72  which are in  F..

In what follows, fix such  B  and a corresponding sequence   (F.: i £ N).   It

should be clear that we can simultaneously effectively enumerate   K and  B

without repetitions, in stages  0   1   2, * • * ■,   in sucn a way that whenever  i

is enumerated in   K,  then at the same stage some member of  F. is enumerated

in  B.   We shall show that in fact  B  is btt-complete.

In the stages  0, 1, 2, •••  we shall simultaneously enumerate a set  C and

form certain lists of numbers, the lists being numbered  0, 1, • • • , 772 - 1

where 772 is the common power of all the  F..   In the  Ath list the  (7 + l)th

number will be denoted  /(A, 7).   Of course   l(k, 7) may not exist for all 7, k,

and even when it does we shall not know what it is until that stage of the

construction in which it is created.   By the recursion theorem we may suppose

there is given for the construction of  C a recursive function g  such that

72 £ C <—* g{n) £ K tot all  22.   We may suppose that at each stage at most one

number is enumerated in   K.   Let   K    denote the set of numbers enumerated

in  K prior to stage  s; similarly for  B    and   C .   The construction is as fol-

lows.

Stage  s.   If 7  is enumerated in   K,  then for each  k < m  such that  l{k, j)

already exists, enumerate  /(A, j) in   C provided only that  l{k, j) is not in

list  k    for any  k , A < k    < m.   Next choose  k < m and n < s  such that  72

is not yet in  C,   g{n) 4 K   +1,  «  is not yet in list  A,   and  F   ,   . O B   +.   has

power A.   (If no such  k and  ?2 exist simply ignore this part of the instructions.)

Maximize  A  and then minimize  72 to get a unique pair.   Make  22 the next

member of list  k.

This completes the construction.   Consider the greatest  k < m  such

that list  k is infinite.   Let   K'  consist of those  7  in  K  such that  7  is

enumerated in   K after  /(A, 7) has been created.   Then   K1   is creative since

K - K' is recursive.   By choice of  k there exists  7     such that for all

j > j , 2(k, 7) never appears in any of the lists A  , k' > A.    Define   G. =

p _ B   _,_,,  where   s  is the stage in which  l(k, j) is created.   Since
g(l'k.i))        s+r

g{l{k, j)) 4 K       , G . 4 0.   We claim that for all  7 > jQ, j £ K it and only if

G. O B 4 0 -   Consider a particular such  7.   As above let s be the particular

stage in which  /(A, 7) is created.   If 7 / K'  and  G. C\ B 4 0 ,  then  /(A, 7)

will eventually appear in some list  k'. A' > k,   contradicting  7 > jQ.   Hence
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7 4 K' implies  G. D B - 0.   If j £ K' then  g{l{k, /))  will be enumerated in

K  at some stage > s,  whence some member of  F  ,,,,     ...  will be enumerated
° gU'k, ;))

in  S  at a stage > s,   whence   G. n B 4 0-   This establishes the claim and

completes the proof that  B  is btt-complete.

Post's simple set.   Richard Ladner pointed out to me that Post's

simple set  S (see [6]) is wtt-complete, as can be seen from Martin's proof

[5] that it is complete.   He also asked whether Post's simple set is neces-

sarily tt-complete, necessarily not tt-complete, or neither.   The answer is

"neither",   One can construct a simultaneous effective enumeration of all

the r.e. sets such that the numbering of the r.e. sets is acceptable (i.e. the

enumeration is "standard"), and such that the resulting  S is either tt-com-

plete or not.   To make  S not tt-complete one simply refines the idea presented

above for the construction of a wtt-complete but not tt-complete set.   To

make  S tt-complete is easier, and we sketch this below.

Let  ( W.: i £ N)  be some given standard enumeration of the r.e. sets.

Define a new standard enumeration   (W!; i £ N)   as follows.   For all  i > 1

and   1 <;< i + 1,   let   W'     ,, ,.,= W.,  and  W'     ,,,.,.. be either the
— '  — exp(2,2i) 1' exp(2,22)+7

singleton  iexp(2, 2z + 1) + 2/ + l!  or 0  according as  i e K or not.   Other-

wise let  W.'= 0.   Recall the principle of Post's construction:   W. contributes

to S the first number >2z,  if any, which turns up in  W..   Let  S   be the

simple set arising from   ( W!: i £ N).   If  z > 1  and  i £ K then  F. C S'

where   F. = <exp(2, 2z + l) + 2; + 1:  I < j < i + 2}.     But  if  i > 1  and

i 4 K,   then a member of  F.  can only be contributed to S'   by  W,   where

k has the form exp(2, 2/)  and   1 < / < i.    Thus in this case  F. {- S .

It is now obvious that  K <     S'.
— tt
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