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ABSTRACT.  The paper consists of a study of the existence of periodic

solutions of a system of differential equations using Borsuk's theorem

on odd mappings.   Applications are given to 22th order nonlinear vector

differential systems and nth order nonlinear scalar differential equations.

1.   Introduction.   This note concerns the existence of cu-periodic solu-

tions of the system of differential equations

(1.1) y' = Ay + Fit, y),

where y £ R   (R     is real Euclidean ?2-space), A   is a constant nx n  matrix

and  F:   R x R" —> R" iS continuous, co-periodic in  t, and  F  is not necessar-

ily small.

This problem in the case of a nonsingular A has been investigated by

M. A. Krasnosel skil [l], V. A. Pliss [2], and others. The present paper

generalizes results of the above papers to the case of matrices with multiple

characteristic root A. = 0. Partial results in this direction have been obtained

by the author [8], [9] and R. Reissig (see [3], [4], for example) in connec-

tion with the investigation of the behavior of solutions of 72th order nonlinear

equations.

'In contrast to previous papers, the proofs presented here are based on

an application of Borsuk's theorem on odd mappings to the translation

operation generated by (1.1).

The main result of the paper is stated and proved in § 2.   In §3,

applications of the main result are discussed.

The following notation will be used.   The norm in R    is denoted by
T

I |.   If  fl   is an 772 x 72   matrix, B     denotes the matrix transpose of ß.   If
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A is  square, A"    denotes the inverse and  |.4|   the norm, max 11 Ax\ : | x| = lj,

of A.   The same notation will be used for norms in spaces of lower dimensions.

/,   denotes the k x k unit matrix.   If C C R", then C, Int C, and Bd C will

stand for the closure, the interior, and the boundary of  C.   Recall that C C R"

is a cone (with vertex at the origin) if XC s \Xx: x £ C] C C fot A > 0.

2.   Existence of periodic solutions of first order systems.

Theorem 1.   Assume A. = 0  is a k-fold (k < n)  characteristic root of A,

and let the remaining roots be different from2pni/co, p = 1, 2, • • • .   Let  A

have  k linearly independent eigenvectors  \m.\._.   corresponding to AQ.   Let

F: R x Rn —' Rn be continuous and cú-periodic in t, and let

(2.1) \F(t. y)| <n0\y\    for \y\ > yQ and t £ [0, tu].

Suppose there exists an   n x k matrix N such that  A   N = 0, rank(N) =

k  and

(2.2) yTNNTF(t, y) < 0    for all y £ C, \y\ > y v t £ [0, tu],

where  C  is a cone satisfying \y: y = X . _j A .722., S     , | A.| > Oj C Int C.

Then (1.1) has at least one co-periodic solution provided fi    is suf-

ficiently small.

Proof.   Let P be a nonsingular 72 x 72 matrix having m. {i = 1, • • • , k)

as its last columns.   The linear change of coordinates, y = Px, transforms

(1.1) into the system

(2-3) x\ = Dx1+ fjit, x),       x'2 = f2(t, x),

where

'fx{t, x^

■   e   R"~k> I        f.       x  1-/^   X)= P_1^'   PX^>
l^ ' l/,(fc t)''

then (2.1) and (2.2) assume the form

(2.4) (/O, x)| <u\x\     fot  \x\ >rQ, t £ [0, tu],

(2.5) x^Hf2(t, x) < 0    for |x| > r , i,€ [O, tu], x £ C,,,

where (° °) = PTNNTP and Cj   is the cone  fx:  Px £ C\.   Since rank(N) = k
T hi h

H is positive definite, i.e. w   Hw > 0 for all w £ R , w 4 0.   For w £ R

let ||w||2 = wTHw, and for y > 0 p-'t  C(y) = \x\ \x'A <y||x j|i.   Since Int Cj
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contains the set  {x:  x^ = o, x2 4 0Î, a compactness argument with the set

|x2| = 1  shows  C{y) C Int(Cj) for all small y > 0.   Fix y.

Assume for the moment that    f2  satisfies (2.5) with the strict inequality

sign, and let initial value problems for (2.3) have unique solutions.   Associated

with (2.3) is the mapping  T of  Rn  into itself (the translation operator of

(2.3)) defined by  T(xQ) = x(cu, xQ), where x = x(t, xQ) = (x^t, xQ), xA[t, xQ))

denotes the solution of the initial value problem (2.3), with initial conditions

x^O) = x°v x2(o) = x°   (xQ = (x°v x°)).   Clearly   T is continuous, and (2.3)

has an  co-periodic solution if and only if  T has a fixed point.   For the

existence proof we will construct an open bounded set  G C Rn  such that

0 £ G, G = — 1 • G (i.e.  G is symmetric) and

(2.6) (T - e)(x) 4 0    for x e Bd G,

(2.7) ß(T~e)(x)4(l -ß){T-e)(-x)    foi x e Bd G, ß e \}/i, l],

where   e is the identity map.   By Borsuk's theorem [7, Corollary 3.31, p. 82],

this will imply that  T has a fixed point in  G.

First we will prove that there exist positive numbers  ¡i     y , r2¡ r^    such

that, for all fi £ [0, /¿j], if  ||x2H > r2  and  x0 £ Ciy^ then

(2.8) |x0, x0)| > rj    and    x(/, xQ) e C(y)    for í e [0, co],

and, if    x;   > r,  and  x. f  C\y.), then
II -   3 0 1

(2.9) x.(tu, x,)4x°..
I 0 1

In order to see this, note first that (2.4) implies that

(2.10) \f{t, x)\ < a + p\x\    tot (t, x) £ R x Rn,

where a is a suitable constant.

Let  c = maxí|eDí| + 1: t £ [o, <u]L   By (2.3),

x.{t, x) = eDtx°. +   P eD(t-s)f.(s, x.))ds,
(2.11) l 1     Jo '10

x2(t, xQ) = x°2 + J    f2(s, x(s, xQ))ds.

Since the norm of the matrix

C :.)
does not exceed c, (2.10) and (2.11) imply that
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\x{t, xQ)| < c|xQ| + J    c(a + /i|x(s, xQ)|) ds.

Hence by Gronwall's inequality

(2.12) \x{t, x0)| < c(|x0| + aco)ecßt    fot t £ [0, co].

„DtLet  c, = maxlle^ - /„   j,.}:   t £ [0, co]l, y; = X.(t, x¿) (i = 1, 2), and

denote by   A,, 772, respectively, the largest and the smallest eigenvalue of

H.

From (2.12) and inequalities

\y2-xü2\<fto(a + IJL\x(s.x0)\)ds,

it follows that

|y-x0| <^(f2.)|x°| +{k2(ii) + ki{u)r2l)\x\\     for  Í £ [0, co],  |x°| >r2,

where   k2(p) = (c +   l)(eßca-   1),   Te^/j) = c,  +  £2(/i)   and   k^ip) =

acu[l + c + Ä2(^i)].

If xQ e C(yj), then   |xj| ^y^hAxA.   The preceding inequalities together

with \yx\ < \y- *ol + l*il> lx°l <-|y- *0I + \y2\ imp!y

\VX\ < l^Áp) + Dyihl + k2(ß) + k^)r2l]\x°2\ = mx\x2\,

|x°|[l - A^^*, - k2(p) - 4?V)r- '] =- |x°|tt22 < |y2|.

Let  r2  be so large that  r2 > hxry + 2A (0) and  ¿3(0)[/2 - /e^O)]-1  <

y*2-

Then, by continuity, there exist  y( > 0 and pQ > 0  such that for p £

[0, f*J

722J  •   772" L   < y¿2, ¿~    (t722 - W^j >  ri>

which proves (2.8).

To show (2.9) , note that Xj(co, xQ) - x° = 0 is equivalent to

Since characteristic roots of D are different from 2pm/cú {p = 1, 2, • • • ),

the matrix e w- / _fe is nonsingular, which implies that there is an / > 0

such that  l\w\ < \{eDaJ- In_k)w\ for all w £ Rn~k.
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Since   ||x2|| > h2 |x2|, xQ 4 C(yA implies that  yj/22|x2| < |x°J.   Hence

|x0| < (1 + 1/A2.yi)|xj|  and we get finally

(2.13) /|x°| < caxoe^^ + cL + îi_)|*0|(e>A*a'- 1).
\        h2Ïl]    1

Replacing p.^ by a smaller number if necessary, we may assume that

c(l + l/A y )(e^1CÙ}- 1) < '< So from (2.13) it follows that if x° satisfies

xÁco, Xq) - Xj = 0, then  |x   |  is bounded, which proves (2.9).

Now let   G be the set  ix:   |xj < r,\ n ix:   ||x2|| < r2! where  r2  and  r,

ate defined as above.   We have Bd G = F . u F 2, where  F. = íx: |x. | = r. ,

||*2II ̂  r2^   and   ^2 = '*:   lXll  ** r3'   HX2ll = T2^m

Increasing  r    or r,   if necessary, we may assume that  r, =y r,.   Then

y ||x°|| < |x°|  for x0 6 Fv hence xQ ¡¿ C^).   Thus (2.9) implies (2.6) for

xlQ£Fv

Let  x0 e F2.   Put  W(t) = ||x2(i, xQ)||.   Since   F2 C C(yi) and

W'(t) = -~xT{t. xAHjAt, At. xj),
W(t)

(2.5) and (2.8) imply that   W'(t) < 0 for t £ [o, co]; hence

(2.14) ||x2U x0)|| < ||x°||,

which completes the proof of (2.6).

From (2.14) it is easy to verify (2.7), for xQ e F2.

Assume  xQ £ Fj, and (2.7)   fails for some  ß £ \}/i, l].   By (2.11),

i   Dû)
\e 'ln_kK\<ßf^c{a + ß\x(s. xQ)\)ds

+ (l-/3)J    c(a + p\x{s, -x0)\)ds,

and by arguments used in the proof of (2.9), we conclude that   |x,| < r,

which contradicts  x. £ F..

Thus G has properties (2.6), (2.7), and reference to Borsuk's theorem

proves the theorem under our special assumptions of uniqueness and strict

inequality in (2.5).

The general case is obtained by uniform approximation of    / on  [O, co] x

G and a standard limiting argument (see [lO], for example).   The details are

left to the reader.

3.   Periodic solutions of nth order systems.    As an application of

Theorem 1, we will consider the problem of existence of periodic solutions
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of the 72th order system of differential equations
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(3.1) >>
+ Aly^-1)+---+An_ly'+f(y) = p(t),

where  y is an ??2-vector, the  A. ate constant  m x m matrices, and   /:   Rm

—» Rm,  p:   R — Rm  ate continuous.

Theorem 2.    Let A   _j   be symmetric and positive definite and let the

roots of the polynomial c6(A) = det(A"-1/    + \n~2A    + . . ■ + An_ ¡ ) satisfy

A. 4 (2t72'/co) p (p = 1, 2, ■ • • ).   Assume that

(3-2) l/(y)l<ft0lyl  f°r\y\>y0>

(3.3) yTf(y) > k\y\\f(y)\        (0 < A < 1) for all y.

Let p  be co-periodic and satisfy one of the conditions:

(3.4)

or

(3.5)

J>>ds = 0,

minU|/(y)|: |y| > y A > p2 = max{\p(t)\: t £ [0, co]i.

Then (3.1) has an cú-periodic solution, provided i^.   is small enough.

A weaker version of this theorem was proved in [9].   Theorem 2 with

(3-4) gives   an extension of results of R. Reissig [3], [4] where the existence

of periodic solutions was proved under the hypotheses that limi   1     !/v)|/|y|

= 0 and that  <f> has roots with negative real parts.

Proof.   Let (3.4) hold.   Replace (3.1) by the equivalent system

.T
(3.6) :' = Fx + bz + bp^t),       z' = -f(c   x),

where px(t) = ji0p(s)ds, xT = (*t ■ • • xn_ l), x. £ Rm, Jfj - y and  b, c, F

ate the  (72 - 1)772 x m, (72 - 1)772 x 722, (n — \)m x (72 — 1)272 matrices

1 0

0

0

0

72- 1 72-2
'72-3

0

0

0

/
m

-A

\

1 I
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Then (3.6) is of the form (1.1) with

' bpXt)

(::>
Fit, x, z) =

-f(cTx)>

so it suffices to verify the assumptions of Theorem 1.   Put

M
F-V

Since det(A - A/mn) = Am(- l)m(" ~ 1 V>(A), rank (M) = m, AM = 0, the matrix

A  satisfies the conditions of Theorem 1.

By (3.2) and (3.3),   Fit, x, z) satisfies (2.1).   Let   K be a symmetric

matrix such that  K2 = A  _..   Define the  nm x m matrix N by  N = if,).

With the above notation, (2.2) may be written as

(3-7) -zTK2ficTx) <0.

By (3.3),

zTK2ficTx) = iK2z - cTx + cTx)TficTx) > |/(cTx)|(£|cTx| - \K2z - cTx\),

so (3.7) holds for  (x, z) belonging to the cone  C = <(x, z):   \K2z - c' x\ <

k\cTx\\.

Observe that   L = i(x, z): x = — F~^bw, z - w, w £ Rm\ is a subspace

of  R        spanned by eigenvectors of A  corresponding to  A = 0.   Since

- cTF~ lb = A~ 1, , then   K2 + cTF~ lb = 0, and direct calculation yields
72 - 1  ' J

(l\ io!) C Int C, which proves Theorem 2 with the assumption (3.4).

In the case (3.5), replace (3.1) by

(3.8) x' =Fx + bz,        z' = -ficTx) + pit),

where  x, b,   c, F ate as before.

Since (3.8) is obtained from (3.6) by taking  p ^t) = 0 and replacing

fie7x)   by  fAt, x, z) - fie   x) - pit), it remains only to verify that /

satisfies (2.2).

By (3.5), there is a  ^ £ (o, k)  such that yT(/(y) - pit)) > ik - ¿j)|y| •

|/(y)|, which implies that -zTK2ificTx) - pit)) < 0  for (x, z) in the cone

\ix, z): \K2z- cTx\<iik-k^)/il + k))\cTx\\;  this completes the proof of

Theorem 2.

In the scalar case, instead of (3.1) one can consider a slightly more



PERIODIC SOLUTIONS OF A SYSTEM OF NONLINEAR D.E. 335

general equation

(3.9) yM + gliy(n-2Vn-l)+ •••+«„_ ¿vV + /(y; y', ■ • •, y(n~1}) = pit),

where g.:  R — R, f:  R x Rn~l — R, p:  R — R are continuous.   An

application of Theorem 2 gives

Theorem 3.    Let G.{u) = fig-is)ds  satisfy

(3.10) IG-(a) - c2¿Z2| < p\u\     for i = I, •••,»- 1, \u\ > *,-.

•i4ss2277ze í^flí  a  _    > 0  ¿W ifW í¿e polynomial c?j(A) = A""1 + a X"~2 +

• • • + a Aas roots different fromi2ni/co)p, p = 1, 2, ■ ■ • .   Leí

(3.11) 0 <y/(y, x) </jy2    /or  |y| >yt, z e Z?""1.

Leí p  èe co-periodic and either

(3.12) j^pis)ds = 0

(3.13)        \ f iy, z)\>f> max{\pit)\: t £ [0, co]\     for  \y\ > y      z £  Rn~ l.

or

// i¿ is sufficiently small, then (3.9) has at least one co-periodic

solution.

T
Proof.     Let   Xj = y,  xT = (xj, ...  ,   x   _j)    and

G(x)= [«„_,*!-Gn_ j^)î+... + [«,*„_ i-GjU^)],

and let  è, c, F be as in Theorem 2  (222 = l).

Then (3.9) may De replaced by

(3.14) x'= Fx + bz + F At, x, z),        z' = F2it, x, z),

where

FjO, x, z) = b (' pis)ds + bGix),

F At, x, z) = -fie   x; Fx + bz + F At, x, z))

if p satisfies (3.13), and

F A.t, x, z) = bGix),        F2it, x, z) = -ficTx; Fx + bz + F ¿t, x, z)) + pit)

otherwise.   It is easily seen that the proof repeats arguments used above,

hence it is left to the reader.

Theorem 3 generalizes results of  [5] and partially of [6].
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