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ABSTRACT.   Brick partitionings are used repeatedly to prove, by

definition, the classical Kline 2-sphere characterization.

Introduction.   The Kline theorem states that if M  is a Peano continuum

not separated by the omission of any  two points  but  separated by  every

1-sphere, then  M  is a 2-sphere.   The use of brick partitionings makes it

possible to obtain this result.  The bulk of the proof constitutes showing the

existence of a sequence of brick partitionings  G., G2, • ■ ■ having the follow-

ing properties: each brick of each  G ■ has a 1-sphere for boundary; the clo-

sure of each brick of each  G ■ has connected complement; each brick of each

G. may be broken into two bricks by an arc in the closure of the brick span-

ning the boundary of the brick and having appropriate end points such that

the two new bricks may replace the original brick in  G    so that  G   retains

the properties stated above; and G+1  is a l/z-refinement of  G .

In addition to the esthetic value of proving the Kline theorem by defini-

tion, the Zippin 2-sphere characterization and the Jordan 2-sphere character-

ization are obtained as corollaries.   A result which is a corollary to the Kline

theorem is reproved here without using the Kline theorem.

Bing proved the Kline theorem in [l]. He reproved the theorem in [3]

using brick partitionings. Each proof depends on a construction which is

stated in this paper as Lemma 1.

A contradiction is denoted by   ® .

1. Preliminaries.   For definitions of standard point set terms, the reader

is referred to [5], while for terms concerning partitioning the reader is re-

ferred to [3].

The definition of brick partitioning is given in this section since brick

partitionings are used in many of the proofs. Some necessary nomenclature

precedes the definition.
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We define the E metric on M tot x £ M, y £ M as E (x, y) is the greatest

lower bound of the diameter of all connected subsets of M  which contain x

and y.  One problem which arises when one is dealing with a set with property

S occurs when one desires to partition the set in such a way that boundary

has certain properties.  When this happens, one would rather deal with a set

which is uniformly locally connected. But if a set has property S and is

connected and locally connected, it is uniformly locally connected under the

E metric. The E metric also preserves the original topology.  The E metric

on M  is denoted by  E(zM; x, y).

Definition.  A finite collection  G of mutually exclusive connected open

subsets of M is a partitioning of M if the sum of the elements of G is

dense in  M.  If each element of G  is of diameter less than  c, G is an e-

partitioning.  If each element of G has property S, it is an S partitioning..

Definition.  An S partitioning G of M is a brick partitioning if:

(a) each domain containing a point of M which is a limit point of each

of two elements of G also contains a point of M which is a limit point of

each of these same two elements of  G  but of no other element of G,

(b) each element of G  is uniformly locally connected under E (M; x, y),

(c) each boundary point in  M of an element of G  is a boundary point

of another element of G.

2. The Kline sphere theorem.  The pattern of proof used to show that a

Peano continuum D is by definition homeomorphic to a closed euclidean

2-cell E is almost universal. A dense subset M of D, a dense subset  K

of E  and a function / are determined such that f: M —» K is   1-1, and onto,

while both / and /        are uniformly continuous.  It is well known that / c"an

be extended to establish a homeomorphism between D  and E.   For example,

see [5, Lemma 4.1, p. 87] and the theorems following it.  The variations in

the proof are in determining  M.  Brick partitionings are found to be quite

helpful in this endeavor.

We begin by proving several lemmas. The first one Bing showed implied

the Kline theorem via Zippin's characterization of a closed 2-cell.

Lemma 1.   Let M  be a Peano continuum which is not separated by the

omission of any two of its points and a an arc of M with end points p and

q which irreducibly separates  M.   Then there exists a 1-sphere J  in M

which intersects  a only in p and q while M - ]  is connected and has

property S.

Proof. See [3, Theorem 20].
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Note.  If a  separates space then some subarc of  a irreducibly sepa-

rates space.

Lemma 2.  Let M be a Peano space.   Then for every f > 0 and p e M

there is a domain D  in M  having property S such that p £ D, while D  is a

Peano continuum, has connected complement and is of diameter less than t.

If M has no local cut points then D  has no local cut points.

Proof.  See [4, Lemma 2.5l.

The following lemma is a trivial corollary to the Kline theorem.  See

[4, Lemma 2.lL  It is reproved here without using the Kline theorem.

Lemma 3.   Let M  be a Peano space with no local cut points.   Suppose

D  is a domain whose closure is a proper subset of M, is a Peano continuum,

has connected nonempty complement and has the property that every 1-sphere

in D  separates M.   Then D  contains a 1-sphere } such that D - J  is

connected and has properly S while   Bd DC}.

Proof.   Let p £ Bd D.   By Lemma 2 there is a domain  C  in D  having

property S  such that p £ C, while C  is a Peano continuum, has no local

cut points and has connected nonempty complement relative to D.  Let  a

be an arc in D — C spanning C .  Since C has property S there is an arc ß

in C O D  spanning the end points of a. Now a \j ß = J     a 1-sphere in D.

/j   separates space; each component intersecting C .  If ß does not separate

C , then since  C has property S, every point of M - } may be joined to p

by an arc in  M - J.  Thus ß  separates  C .   By Lemma 1 there is a 1-sphere

J2  of C   which does not separate  C.  Since  ]2  separates M, Bd C C /,.

Thus p £ J2.  Since  C   is a neighborhood of p there is an arc of J2  sepa-

rating  D.  Finally, by Lemma 1, there is a 1-sphere J of D  such that D

does not separate D. Since / separates M, Bd D C /.

The following lemma allows us to utilize Lemmas 2 and 3.

Lemma 4. Let M be a Peano continuum which is separated by every

1-sphere but not separated by the omission of any pair of points. Then M

has no local cut points.

Proof.  By [5, Corollary 3.32a, p. 86], M is cyclic. Assume p is a cut

point of the neighborhood  U  of p  in M.   By Lemma 2 there is a neighbor-

hood  V of p  such that  V C U, while  F  is a Peano continuum, having con-

nected complement. Since  V  contains a 1-sphere, and any such 1-sphere is

contained in a single cyclic element of  V, V  contains a nondegenerate

cyclic element  K.
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We now show that   V = K.  Suppose   K 4 V.  Let  /  be any 1-sphere of   K.

/  separates  M.  By Í5, Theorem 3.24, p. 83l each component of  V - K has

exactly one limit point in   K.  Thus each component of  V - K meets  Bd V.

Thus  (zW - V) U {V - K) = M - K is connected.  Hence one of the components

of M - /  is contained in   K.  Now each pair of points of  K belongs to a 1-

sphere  /     of  K  and a component  C  of M - /    is contained in   K, where

Bd C = / .  Then no two points of K  separate  K.

There is an arc of M - K  spanning  Bd K with end points x  and y.

There is an arc  a of  V  containing x  and y  and also a point of Int(K).   The

union of these two arcs forms a 1-sphere  / .   /    separates  M.  Since M - K

is connected, a separates  K.  Thus by Lemma 1, there is a 1-sphere /"   of

K which does not separate   K.  Thus  Bd K C /".  Since no subarc of /"   sepa-

rates M, Bd K = J . Thus there is an arc ß of /" such that each point of ß

is a limit point of a component of  V - K.  Thus   V  contains an uncountable

number of disjoint open sets. ® Thus  V = K.  Then   V is cyclic.  Hence p

is not a cut point of V. ®

Theorem.   // M  is a Peano continuum which is not separated by the

omission of any 2 points but is separated by every 1-sphere, then M  is a

2-sphere.

Proof.   The proof will be done in sectionalized form.

(1) Each 1-sphere  /  of zM  separates  M into 2 components  Rl   and R2

each of which has property S, while  Bd R , = ■] = Bd R2.

Proof.   Let /  be any 1-sphere of M.  Let  R.   and  R2  denote 2 comple-

mentary domains of /.   If  Bd R. 4 ] then some arc of  /  separates  M.   By

Lemma 1 there is a 1-sphere which does not separate space.   ®      Thus

Bd R. = / = Bd R2.  Suppose there is a third complementary domain  R,  of

/.  Let   a be an arc of  Rj   spanning  /  and ß  an arc of R2  spanning  /.   Now

a u ß C /'   a 1-sphere contained in  iuj3u/.  Let  T = / - / .  Each point

of R\- J    may be joined to  T or the arc  R, - /    separates  ¡M.  Then every

point in M - J    may be joined to  T by an arc.   Since   T C Bd R^, M - J     is

connected.   ®     Thus  M - / = RJ U R2  while  Bd R{ = ] = Bd R2.  By

Lemmas 4 and 1, R.   and  R2  each have property  5.

(2) RARA has no local cut points.

Proof.   Let  p be a local cut point of R l.  By Lemma 4, p £ J.  Also  p

separates an arc of /  in some neighborhood  V of p.  Let  U be a neighbor-

hood of p in  M  such that   U O R l C V.   By Lemma 2 there is a neighborhood

D of p  such that  D  is a Peano continuum, D C U, while  R j - D   is connected.
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By Lemma 3, D  contains a 1-sphere  /    such that D - J    is connected while

Bd D C /'.   Thus  Bd D = /'(rel M); hence  p e ]'.  Thus, some are of ]'n  Rj

spans ] - p.  But J p\ R    C V.    ®   Thus p  is not a cut point of  V.  This

shows that R,(/?2) has no local cut points.

The proof will consist of showing that  R.   is a closed 2-cell.   For the

rest of the paper Rl  will be denoted by R.

(3) For every  c > 0 there is a brick ¿-partitioning G  of R  such that the

boundary of each brick in  G  consists of a finite number of 1-spheres.

Proof.   Let e < .01 diam /.   By [3, Theorem 8] there is a brick c-partitioning

of R.   Let g e G  and C be any complementary domain of g (rel zM).  Let a be

an arc of C n R  spanning g .  Since g has property  5  there is an arc ß  of

g   spanning  Bd g  such that  a ij z3 = J     a 1-sphere of  R.  /j   separates zM.

Also each component of zM - / j  intersects g.  Thus ß irreducibly separates

g.   By Lemma 1 there is a 1-sphere  J 2  of g   containing the end points of

/3  which does not separate g .  If  ] 2 C\ S 4 0 then some arc  a in /.flî

spanning  Bd g  does not separate g .  Since each brick of G has property S,

a can be shown to be an arc of a 1-sphere /,   where  /, n g = ex.  But then

a must separate g,  or  /,   does not separate  M.  Thus  /2 O g = 0, hence

/2 C Bd g.  Since /2   has exactly 2 complementary domains and  J2 O C ¡^0,

Bd C C /2.   Finally  Bd C = /2.  Thus the boundary of each brick g  of G

consists of a finite number of 1-spheres.

(4) G  may be refined so that Bd g(rel M) consists of exactly one 1-sphere.

Proof.   Let  G  be any brick partitioning of R.  Denote the maximum

number of boundary 1-spheres of the bricks of G  by 72(G).  If 77(G) = 1   we

have the desired result.  Suppose  k > 1   and that the proposition is true for

all G  with  72(G) < k.  Let  G be a brick partitioning of R  with  n{G) = k.

Choose g £G such that g has  k boundary 1-spheres.   Let  ]l   and }2  de-

note any 2 boundary spheres of g.   There is an arc  a oí g   which spans

Bd g  having one end point on  /j   and the other end point on  J2.   By Lemma

1, a does not separate g .  Let ß be an arc of g - a which spans  Bd g

having one end point on  /.   and the other end point on  J2.  Let § <

.01 d{a, ß). Using [3, Theorem 8] we may obtain a brick S-partitioning H of g

which may be substituted for g  in  G  to retain a brick partitioning of  R.

Consolidate all the bricks  h of H fot which  h n ß 4 0.  Call this brick h .

Let h    be the consolidation of all the bricks  h  oí H  which lie in the com-

ponent of g - h    which intersects   a.  Let  272  be the consolidation of h

and all the bricks of H not in h..  Thus, /? j U h 2 = g ■  Now g  is replaced

in  G  by  h     and h  .  The refinement of g  into Aj   and  h2  has created 2 new

boundary 1-spheres: the boundary 1-sphere of h.{h2)  which separates
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h^ih^  from h2ih^).  However /,   and  ]2   ate no longer boundary 1-spheres

in this refinement.  Thus, h^   and h2  have at most ik - l) boundary 1-spheres.

Proceeding in this manner with each brick of G  which has  k boundary 1-

spheres, one arrives at a refinement  K  of G  such that niK) < k.  By the

induction hypothesis   K may be refined to a partitioning  G    for which

nic') = 1.

(5) Let g e G and  a an arc of g   spanning  Bd g  such that each end

point is the limit point of exactly one other brick of G.  Denote the two

arcs of  Bd g  spanning the end points of  a by ß  and y.  Then g -

(au ß U y) has exactly two components  C,   and C2  where Bd C, = a\j ß

and  Bd C-. = a \jy.  Furthermore a brick refinement of G  having all the

properties of G  is obtained by substituting  C.   and  C2  fot g in  G.

Proof.   M - g  is a complementary domain of the boundary 1-sphere of

g; thus has property  S.  Hence there is an arc in  zVI - g  spanning  Bd g with

the same end points as   a.  Then  a belongs to a 1-sphere whose intersection

with  g~  is   a.  This shows that  a separates  g~.

Let  Cj   be the component of  a u ß  which does not intersect y.   Then

Bd C^ = aij ß.  Let  C2  be the component of  a u y  which does not inter-

sect ß.  Then  Bd C2 = a\jy.  By Lemma 3, C,   contains a 1-sphere /

such that  C.   — J    is connected and has property  S, while  Bd C. C /'.

Then   Bd C. = J , while  C . - J   = C.   has property S.  Similarly  C2  has

property  S.

Suppose g - (o-U /S u y) has a third complementary domain C,.  Then

C, Cl ß 4 0 and  C, O a^0.  But then   a does not separate  C.   from  C2   in

g .   Any other complementary domain of g - ia\j ß \j y) must also intersect

ß  and   ex.   Thus   a does not separate  g .  ®     This shows that  C. ij C2 =

g - (a u ß U y).

In order for C.(C2)  to be bricks, each must be uniformly locally con-

nected under the metric E{R; x, y) discussed in §1.  Assume  Cj  is not uni-

formly locally connected under the metric  E {R; x, y).  Then there is a point

pea and e > 0  such that there exist two sequences of points |x  S  and

iy  S  in  C. , both converging to p, such that E {R; x  , yn) > e for all 72.   By

Lemma 2 there is a domain  D  in  Cj   such that  p £ D, while D  is a Peano

continuum, has connected complement and is of diameter less than  t.   By

Lemma 3, D  contains a 1-sphere  ]    such that  Cj - /    is connected while

Bd D C /'.  Since p e D  and /'   does not separate D, p £ /'.   Indeed, there

is a subarc of  a contained in / . But then for some  72  both  x^  and yn  be-

long to D - ]'.  Thus  EiR; x n, y) < e.     ®

By the definition of brick partitioning and the restriction on the end
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points of  a, Cj   and  C2  may be substituted for g  in G  to obtain a brick

refinement of having all the properties of G.

(6) R  is a closed 2-cell.

Proof.   Note that g. Pi g    and g   (~\ J is empty, an arc, or a finite collec-

tion of arcs.   Let  K  be the set consisting of the interiors of the arcs of

g. n g    and g¿ n /, calling these arcs 1-cells; the end points of these arcs,

calling these 0-cells; and the elements of G, calling these 2-cells.   K  is

called a 2-complex and is denoted by   K (G ).

By induction and (5) for each 2-complex    L  associated with a brick

partitioning  H of a closed 2-cell  E  satisfying (4), there is a brick parti-

tioning  G of R   satisfying (4) such that  K{G)  is isomorphic to  LÍH); i.e.,

there is a  1-1   correspondence between the cells of  K and the cells of  L

which preserves dimensionality and boundary relationships both ways.

For each g £ G  no two bricks g ., g2  £ G have the property that g~C\ g

separates g,_ ■ n g~ in  Bd g  for  z = 1, 2.   Thus one may always find a brick

g    eG  such that g  may be consolidated with  g,   to form a brick satisfying

(4).   By induction and (5) for each   K{G) there is an  L{H)  which is isomor-

phic to  Rie).

Let f.  be a monotone decreasing sequence of real numbers converging

to zero where e. < .01 diam /.  Let G,   be a brick  e,-partitioning of R;

LÍH.)  a 2-complex isomorphic to  K{G.); H.   a brick e.-refinement of  H.;

and G.   a brick t.-refinement of G,   so that  KÍG.) is isomorphic to  L (//,).

Suppose  KÍG.) and  LÍH-) have been obtained where  KÍG-) is isomorphic

to  L (//.), where  G    is a brick ^-partitioning of  R   and a refinement of

G._p while  H. is a brick e -partitioning of E  and a refinement of rY-_j.

Let  G' + j  be a brick  f+.-refinement of G ; L(//. + 1)  a 2-complex isomorphic

to  K(Gz + 1),  where  W¿+1  is a refinement of  //;; H¿ + 1   a brick £¿.^-refinement

of H +1;   and  K(G +.)  a 2-complex corresponding to  LÍHl + l), where  G¡ + 1

is a refinement of G.+,.

Let X denote the set of points which are 0-cells of at least one KÍG),

i = 1, 2, ■ ■ ■ .  Let   Y denote the set of points which are 0-cells of at least

one  LÍH ), i = 1, 2, ■ ■ •. Note that X  is dense in R  while  Y is dense in

E.   Let /: X —• Y  where fix) is defined by the isomorphisms obtained.

Now / and /_1 are both uniformly continuous. Let c > 0 and choose

i such that 2 t. < e . By way of contradiction one may show that there is a

(5 > 0 such that if x and y are points of R (E) of distance apart less than

r5, then x and y belong to or are on the boundary of the same or intersecting

2-cells. If two points of X(Y) are of distance apart < 8, the points corre-

sponding to them under f if ~ l) in X(Y)  are in or on the boundary of the
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same or intersecting 2-cells in   KiG^ (L(z7¿)), so that their distance apart

is < e.  Thus,  / and / ~     are uniformly continuous.

Following are two corollaries.   The first is a direct result of the Theorem.

The second corollary follows from the first corollary.

Corollary 1.   A Peano continuum  C which satisfies the following three

conditions is a 2-sphere:

(a) C contains at least one 1-sphere.

/I    N       I- ,7 I      ^ S-
(b) Every 1-sphere of  C   separates   C.

(c) No arc which lies on a 1-sphere of C separates  C.

Corollary 2.   A Peano continuum which contains at least one 1-sphere

and which satisfies the Jordan curve theorem is a 2-sphere.
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