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PROJECTIVE MAXIMAL RIGHT IDEALS

OF SELF-INJECTIVE RINGS

O. A. S. KARAMZADEH

ABSTRACT. It is proved that a projective maximal right ideal M of a

self-injective ring R is of the form M = eR + /(/?)• It is also shown that

if every maximal right ideal of a self-injective ring R is projective, then

R   must be Artin semisimple.

A ring  R   is called self-injective if R   is injective as a right  R-module.

By a regular ring we mean regular in the sense of Von Neumann [4].

Let M  be a right  R-module; a submodule P  of M  is said to be essential

if PnN ¿ (0), for any submodule  0 / N  of M; we denote this by  M    DP.

Then the singular submodule  Z{M) is defined by  Z{M) = {x £ M\R    3 Ann(x)¡.

It is easy to see that if R   is a regular ring, then Z{R) = 0.

It is also well known that if R   is a self-injective ring with the Jacobson

radical / = ]{R), then / = Z{R)  and R/J   is a self-injective regular ring,

and finitely many orthogonal idempotents of R/J   can be lifted to orthogonal

idempotents of R (see [2]).

Throughout this paper, R   will denote an associative ring which does

have a unity.  The reader is referred to [2] for basic results on semiperfect

rings.

Proposition 1.  Let  R  be a self-injective regular ring; then a maximal

right ideal which is projective is a direct summand.

Prool.   Let M  be a maximal right ideal which is projective as a right

ß-module; then M = 2;e/©e.ß; e2 = e.Vz £ I (see [l]).  Since every max-

imal right ideal is either essential or a direct summand, we must assume

that M  is essential and, therefore, /  is infinite.

Without loss of generality we can assume  e .e. = 0, i ¿ /'; for if p .: M —>

e{R  and kr. e¿R—>M  are the natural projection and injection, respectively,
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and a. - k .p., then a. £ Hom„(/M, M) and a2 = a. Vz £ I and a.a. = 0,
z z~z z Kv / z z z    ;

t ^ /.   Clearly a = 5.a. .a Va £ M, where  a .a = 0 for almost all i £ I.   So

M = 52©a.zYl   and, as R   is injective, there exists for each a. in Hom„(Ai, M)

an element e.    £ R   such that  a .m = e. m V/tz e zM.   Then since Z{R) = 0,z z z \   /        >

we get    e.' = e'.    Vz e /  and e.' e.'   = 0, i á j.
6 z        z z    i ' '

Now we assume  M = S.   ,£Be.R, e. = e ., e .e . = 0, i ¿ j.   Since  /  is
z e/ v1'   »i z      z  j        '        '

infinite we can have / = /. U12, where  /.   and ¡2  are both infinite subsets

of /. Set Ml = I.£li®e.R, M2 = Zje¡2®e.R.   '

Now if p.: M—*M ., z = 1, 2, is the natural projection, there exists a .,

i = 1, 2, in R   such that p .(m) = a.m, i = 1,2, Vm £ M.   Clearly a^a M =

a a.M = 0, so a.a    = a  a   = 0.  We claim that either a     or a     belongs to

M, for if a2 ¿ M, then a R + M = R   implies   1 = a  r + m, r £ R, m £ M; then

multiplying by fl.   we get a. = a :a r + a.m £ M.   So assume a    £ M, then

a   = m   + m , m. £ M., i = 1, 2. Multiplying by an element x £ M.   we get

fl.x = m .x + m x  which implies x = m  x, m x = 0; in particular, m. = m..

This shows that M, = m,R  and so m,e . - e . Vz e /,.
11 1   z        z 1

If m, = S.   ^.r., where A  is a finite subset of /,, then e .ra, =0
1 i eA   i z ' 1 z    1

Vz £ /, - A, and also e. = e=(m,e.)=0 Vz £ I, —A, a contradiction.
1 z z 1    z 1

Hence / must be finite.

The following result investigates the projective maximal right ideals

in a self-injective ring.

Corollary 1.  // R  is a self-injective ring and M  a projective maximal

right ideal, then M = eR + ], where  e = e .

Proof.   By using the dual basis lemma and the fact that  R   is injective,

it is easy to see that a right ideal M  is projective if and only if there exists

a collection  j?7z.| CM  such that for all m £ M, m .m = 0  for almost all  i and

m = 1,m m; hence if M   is a maximal right ideal, M/J   is a projective maximal

right ideal of R/J  and, in view of Proposition 1 and the fact that idempo-

tents lift, we have M/J = {eR + J)/J, e = e     which implies  M = eR + J.

The following lemma is well known (see [2, p. 67]).

Lemma 1.  // every maximal right ideal of a ring  R  is a direct summand,

then R  is Artin semisimple.

It is trivial to see that if the Jacobson radical of a ring  R   is injective

it must be zero.  We also have the following result:

Lemma 2.  // R  is a self-injective ring, then no nonzero right ideal in -

side the Jacobson radical is projective.
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Proof.   Let  0 /= I be a projective right ideal contained in /, and let

\a \ be a collection of elements of /   such that a .x = 0  for almost all  i  and

Vxe /  and also x = Sa x.   But X       ,„a . £ J   shows that   1 - S       ,„  fl. is a
z a .x¿0   z      J a .x^O     *

z z

unit, so x(l — 2       ,i3.) = 0  implies x = 0, a contradiction.
z

Proposition 1, together with Lemma 1, yields the following result.

Corollary 2.  There does not exist a non-Artinian self-injective regular

ring in which every maximal right ideal is countably generated.

Proof.  In a regular ring, since every countably generated right ideal

is a direct sum of principal right ideals,   it is projective.

Osofsky has shown [3] that a selfrinjective ring  R  which is right her-

editary must be Artin semisimple. We prove a generalization of this result.

Corollary 3.  // every maximal right ideal of a self-injective ring  R  is

projective, then R  is Artin semisimple.

Proof.  Since every maximal right ideal M  is of the form zVf = eR + J,

it is sufficient to show that / = 0.  Clearly R/J  is Artin semisimple and, as

idempotents lift modulo /, R  becomes a semiperfect ring.  So R  contains a

finite orthogonal set of primitive idempotents  \e , e   , • • • , e   j  such that

l = e,+e.+...  +e   , and it is well known that for each  i. e.R/e.]   is a
1 ¿ 7Z I lJ

simple  R-module.  Therefore for each i, e .J © 2. ,, @e,R  is a maximal

right ideal, so / = e J © . . . © e  /   is projective, which implies / = 0.

I wish to thank the referee whose valuable suggestions led me to answer

my question in an earlier version of this paper.
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