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THE CRITICAL SET OF THE REDUCED NORM,

AS AN ALGEBRAIC SET

DON GOELMAN

ABSTRACT. For an associative algebra A over k, the reduced

norm v. A -> k is a polynomial function. As such the critical set C

is defined, consisting of points where the differential  (dv)    vanishes
z

The  /c-rational points of  C    have been determined by the author under

certain separability conditions (Rational critical points of the reduced

norm of an algebra, Bull. Amer. Math. Soc. 80 (1974), 138-141); here

the dimension of  C     as an algebraic  k-set is discussed.
v

1.   Introduction.   Let  A  be an associative algebra of dimension  72 over

an infinite field k with reduced norm v. A —► k.   Then the set  (C  ),   of its

critical points lying in  A  is defined; it has been determined by the author

[4] subject to certain separability conditions.   Since v is a  ¿-polynomial,

we may consider v £ fi[x],   where  x = (x„ ■ • •   , x )  and fl  is a universal
j ' 1' n

domain for k.   Then the set of critical points  C   = \z £ Q,n\(dv)     = 0\ is

an algebraic  ¿-set in Çîn.   In this paper the dimension of  C    is determined.

This quantity is involved in the theory of Gauss transforms and zeta func-

tions [5].

The heart of the proceedings is the discovery of the dimension in the

case where  A  is a full matrix algebra over  k.   While this may be done by

exhibiting a generic point, the preferable approach is one which makes use

of a group action on  C  ; this action holds promise for giving good insights

into further structure of C  .   From this particular case, one proceeds to

central simple algebras and then to special cases of simple and semisimple

algebras.   Then the other simple, semisimple, and abstract associative

algebras are dealt with.

For basic definitions and structure  theorems of algebras, see [l], [3];

for geometric concepts see [7]; the definition of critical sets is as in [5].

For a subset  S of the ambient space Í2", we denote the set of its  ¿-rational
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points by 5,.   The following notation, as in [4], has been adopted for a

simple algebra A  over k:   K is the center of A,  so that A = M   (D), a full
772

matrix algebra over the K-central division algebra D; the dimension of D

as a vector space over K is d2, and [K: k] = t; thus d is the index of A

and D over K; r = md, the degree of A over K; and 72 = r2t, the (vector

space) dimension of A over k. We also have the reduced norms v: A —» k,

v : A —> K, v*: D —» ¿, and i> : K—>L For the general ¿-algebra A, we let

N denote its radical, and A ., • < • , A , the simple component summands of

A/N, each with the appropriate invariants  K., D ., m ., d., r., t., n. and
_ l l l l        X        l l

reduced norms v : A/N —> k and v.: A. —> ¿, z = 1, •. • , s.   Finally, (du)    is

the differential map of the norm at  z.

The main theorems on  ¿-rational points of  C    ate the following [4]:

Theorem 1.    Let A  be a simple algebra over k,   with n not divisible

by the characteristic of k.    Then

(Cv)k = {z £ A\tk(z) < p(A)\,

where rk(z) is the left row-rank of z as a matrix in M   (D),   and p(A) = 772—1

or 772- 2,   according as dt = 1   or dt > 1,   respectively.

Theorem 2.   Let A  be an associative algebra over k with unity such

that no 72. is divisible by the characteristic of k.   For z £ A,   let z + N =

z , + ••' + z ,   with z. £ A ., i = 1, • • • , s.   Then z e (C ),   if and only if

one of these conditions holds:

(I) There exist i 4 7  with rk (z.) < m . - 1  and rk (z .) < m . - 1.

(II) There exists  i with rk (z .) < p(A .).

2.   A group action on A.   Let GLj(A) be the group of units of an asso-

ciative algebra with unity, and Gfe = GL AA) x GL AA).   The action of Gk on

A   is then defined as follows:  for (P, Q) £ Gfe, z £ A,  (P, Q)z = PzQ~l.

This action, of course, is compatible with the group structure of Gfe.

It is not difficult to investigate this action in more general cases, but

here it is sufficient to determine the orbits in the case where  A  is a simple

algebra A = M   (D).   Then the orbits can be seen to be the sets   H£ =

\z £ A\ tk(z) = p\, p = 0, • • •, 772.     For using linear algebraic techniques over

division rings in the spirit of [2], one can show that the set Í1   |ft = 0, • • • ,

772Í is a full set of representatives of the orbits.   Here   1     is the diagonal

matrix in M   (D) whose first ^t entries are l'a and the remaining  m - p entries

are  0's.
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Next the stabilizer of  1     should be determined, i.e.

Gk\P-lu-Q-
1

M
G£=KP, Q) £

1 This turns out to be the following:

Cl (P, Q) £ GAP

0

7 e

Pl£GLfM(D),P2,Pi£

1

GL        (D)\.
I

Now this action provides a decomposition of (CA),,  under the separa-

bility hypothesis of Theorem 1.   For that theorem can be phrased in terms of

the action, namely,  (Cv)k = f/° U/i^U... U Hp{A \

Finally, we remark that the preceding treatment can be imitated in the

ambient situation.   That is, the group G = GL   (ß) x GL   (Ù) acts on M   (0)
° r 772 772 772

by the same formula as above.   The orbits have the form  H^ = \z £ M  (iî)|rkCz)

= p], p = 0, ■ • • , m.   And the typical element of the "full" stabilizer  G^

of  1     has the same format as that of   G'f,  except that  P.  ranges through

GL (Q) and  P, and  P3  through  GL        (Q).
p- z o m — p.

3. Dimension.   First let us assume that A  is a central simple algebra

over ¿, and that its Brauer class is the identity; in other words,   t = d = 1,  A =

M   (k). As usual, we also have that char(¿) does not divide 72.   Then
m

lAX) £k[X] Ç ÜÍX],  and of course  v(X) = det (X),  X = (X , ■ ■ • , X     ),  and
2 m¿

for z £Çlm  t   we have (dv)    given by the appropriate cofactors.   Therefore

it is clear that in this case   C   = 0  or  \z e M   (iî)| rk(z) < 772 - 2\,  according

as  772 = 1  or 772 > 1,  respectively.   For the nontrivial case, then,   C    =

f70Ur/'u---  UH' Hence  ÍW^| p = 0, 1, • • ■ , 772 - 2\ is the set of

irreducible components of  C  ,   since  H^1 = G/G^.

The dimension of  H^ as a variety can now be computed from that of

G^.   From the generic point of  G^ given above, the latter is seen to be

p2 + 2m2 - 2mp.   It follows that dim(/iM) = 2mp - p2, and dim(Cv) =

max Ídimí/Y'1)! p = 0, ■ • ■ , m - 2\ = m2 - 4 = n - 4.   This is a special case of

Theorem 3.   Let A  be a central simple algebra over k of dimension

n,   with 72 > 1  and not divisible by char(¿).   Then dim(Cv)= 72 - 4.

To complete the proof, first let  L  be a maximal (hence splitting)

subfield of  A.   Then  [L: ¿] = r,   where   r2 = 72.   Now let the map  F:A—>Mr(L)

be the right regular representation of A on itself as an  L-space, for a

fixed L-basis of A.   Since F is ¿-linear,  F £^L in the sense of [6],
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Moreover, the multiplicative property of  F implies, under the terms of

[6, Proposition 6, p. 168],  that v = ¿5op,   where  ¿5: M (L) —» L is the deter-

minant map and the codomain of v is considered to be   L.

Note that  F is an embedding, because of the simplicity of A.   Further,

its  ¿-linearity implies that for z £ A, F(z) = (F ..(z)),  with  F.. a homogen-

eous linear polynomial function in the  ¿-coordinates of z,  with coefficients

in  L.   As such, it extends to the ambient space, along with  v and  8.   In

other words, the commutative diagram is now

fi" -i-» Qn** . r>«

0

all maps being defined over  L.   Then for  z £Q,n,(dv)   =^8)p,. °(dF)z.   Now

since   (dF)     is constant and invertible,   F is an isomorphism (over  L)
z L

between  Cv and Cg.   But dim(Cg) = ?z - 4,  according to the special case

treated above; thus  dim(Cy) =72-4,  and the theorem has been proved.

Next, the case is treated where   A  is simple of index   1; since  / = 1

has already been treated, we may assume   t > 1.   In other words,  A = M   (K),

[K: k] > 1.   Then  [4]  v = v" °v' = Yl(v')a,   where  a runs through the   t

distinct  ¿-embeddings of  K in an algebraic closure.   Thus

(dv)z = £Wi/nz n ^*>r-
o- rmr

Therefore, by the Euler identity for homogeneous polynomials, for z £ C ,

there is a a with  z £ V^ where  Va= \z £Ün\(v' z)a = OÍ for (v')a £

k[X,,•••, X ] C Í2[X,, • • • , X ].    Thus for some   o we have  (dv)   =
1 72 1 '       n z

(d(v')a) II   .¿.v' z)  .   This equality, since it is a polynomial identity, shows

that for all a 4 t,  the intersection  V    nV;    is an algebraic subset of  C.

In fact the equality yields a decomposition of  C    into algebraic subsets:

*FC
V y(^(u<w)}.

ría

where  C    is the critical set for (i/')

This decomposition allows us to conclude that  dim(Cv) =72-2  in

this case.   To do this, note that it is sufficient to show that the maximum

dimension attained by the components of   Va<^ Vr ,  fot all a 4 t,  is  tz - 2;

for  C.  as a proper subvariety of  V   ,  cannot have dimension exceeding

72-2.   However, any component of Va n V.   can similarly have dimension
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at most 72-2.   On the other hand, the varieties   V    ate distinct, because

of the separability hypothesis, and their defining polynomials are absolutely

irreducible.   Therefore, according to intersection theory for homogeneous

polynomials,   dimCV^. n VT ) >n - 2.

At this point we have examined simple algebras of special types:

/ = 1  or  25?= 1.   Rather than turn to the "general" simple algebra, we now

treat the semisimple algebra whose components are of the special types

studied.   In the following discussion, then, the semisimple algebra A  has

components  A , • • < , A   ,  as described earlier, with the restrictions

min (t., d.) = 1,  and tz . is not divisible by the characteristic of ¿,  for
2        2 ' 2 ' '

i' = 1, • • • , s.   Furthermore, assume  s > 1.

In this situation we claim dim (C ) =72-2.   For let z £ A,  z = z   + •.,

+ z   , z.eA., and define v .(z) = v.(z).   Then since codim (C) = codim (C-),
S 2 2 2 2       2 v- v i

we have  dim(C- ) = n — 4 ot n - 2,  according to previous discussions.   Now
i

v(z) =nV.(z.) L4],   so that as above (dv)    = (dv )   U.     v'(z)  for some  z.   This

yields the decomposition

C. =, = U/S.u.(Ulv, n vty,

where  V. = \z £ 0*1 v .(z ) = Ol.   But clearly codim (V. n V.) = codim (V .) +
2 '22 J i y I

codim (V.). Therefore dim (V. C\V .) = n - 2, and so dim (Cv) = tz - 2.

We may now state the main result for simple algebras.

Theorem 4.   Let A be a simple algebra over k with dimension n,  n > 1

and not divisible by the characteristic of k.    Then dim(C ) = tz - 4 or n - 2,

according as  t = 1   or t > 1,  respectively.

Since the case   ; = 1 was the content of Theorem 3, it remains to deal

with t 4 1.   Let  L be a maximal subfield of A.   Then [A: K] - r    and

[L: K] = r.   Consider f: A —>A  ®    L,   where the latter is identified with

0|. = 1(Mr(L)),  defined by  1'U) = ®F(z)a, with a running through the t

distinct ¿-embeddings of  K in ¿~,  extended to  L,   and  F as defined above.

Then if 8': A ®,  L —> L is the reduced norm, we have, extending the earlier

discussion,   §'of = y.   Furthermore,  T is an   L-polynomial mapping and so

may be viewed as  W: fi"—» Ü".   Hence, in an analogous way, 1/   may be seen

to be an L-isomorphism between  Cv and  C¿>.   But since A <g>k L  is a

semisimple algebra of the type treated, we have dim(Cj') = tz - 2.   Thus

dim (CJ = tz - 2.
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With this result for simple algebras, we may state and prove the dimen-

sion theorem for a general case.

Theorem 5.   Lei A be an associative k-algebra of dimension n > 1,

with A/N = A j® • .. ©A^  a decomposition into simple components with

invariants described above, such that no n.  is divisible by the characteristic

of k.   Then if dimfe A/N =1,  C v= 0.   Otherwise dim (C ) = tz - 4 or

tí - 2,    according as st, • « < t   =1  or otherwise.
° l s

To prove this, we first note that for  A/N« ¿ the claim is trivial.   In

the other situation, we may reduce to the semisimple case, since [4]

codim(Cv) = codim(C-).   But for semisimple algebras   A,  the cases

st. • • • t   =1  and s = 1  are included in previous theorems.

Let us therefore assume that A = A ,© • < •© A  , with s > 1.   Then the1 s'

proof is very similar to the discussion before Theorem 4 of the "special"

type of semisimple algebras; the only difference is that Theorem 5 now

allows us to lift the earlier restriction on the components A ^ • • • , A .
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