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ENUMERATION RESULTS IN NILPOTENT ALGEBRAS

HELMUT STRADE

ABSTRACT.   We enumerate the number of subalgebras for some classes

of finite  nilpotent algebras.  These classes are: alternative algebras over

GF(q), noncommutative Jordan algebras over  GF(q), algebras with only

zero squares over some Dedekind domain.

1.  Results.   Let D  denote a Dedekind domain with a prime ideal  P

such that D/P  is a finite field GF(q). An algebra A   over D  is a unital

D-module that is also a (not necessarily associative) ring, such that  a(ab) =

(aa)b = a(ab) for a £ D  and a, b £ A.  Now let A  denote a nilpotent D-al-

gebra such that the underlying D-module  A     is a finitely-generated  P-pri-

mary torsion module.  Then A   is finite with q"  elements.  Let  X be a

subalgebra in A, and let  s   (A/X) denote the total number of subalgebras

of index qm in A  that contain X (s   (A/jOi) = s   (A)). Then the following holds [3]:

sjA/X) = 1   (q).

The main tool to prove this is the following

Enumeration theorem [3].  Under the above assumptions on A, D, P

suppose that the ideal cp(A) = A2 + PA  has index [A: cf>(A)] = q .   Let C

denote a set of subsets of A  such that each member of C  lies in at least

one maximal subalgebra of A.   Let n(B) denote the total number of mem-

bers of C  contained in a given subalgebra B D <p(A) and let

n(Q = Z riB).
BO<p(A);[A:B] = qr

Then the total number of members of C  is

I<:| = £ (_ ir-y(-o^).
-=i
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This theorem goes back to an enumeration principle for nilpotent groups

due to P. Hall [l].  In that case a much better result can be proved: the total

number of subgroups of index pm  oí a finite nilpotent p-group, which is not

cyclic is  = 1 + p (p  ) (Kulakoff's theorem).  In this note we prove a similar

result for some classes of algebras.  The result is false for the class of al-

gebras described above since there are counterexamples even for associative

rings.  The main restriction concerns the Dedekind domain.

If all squares vanish in A   we call A   a zsc/-algebra. Algebras gener-

ated by a single element are called power algebras. z s ¿/-algebra s which are

power algebras are cyclic  D-modules.

In this note we prove the following:

Theorem 1.  Let A   be a nilpotent finite dimensional algebra over a

finite field GF(q).  Then the following hold:

(i) sx(A) = 1 + q + q2 +...  +qk-1, k = dim A/A2;

(ii) if my 1  then s   (A) = 1 + q (q2) if

(a) A   is alternative, m < dim A - 1, or

(b) A   is a noncommutative Jordan algebra, m < dim A — 2.

Theorem 2.  Let A   be a nilpotent finite dimensional algebra over a

finite field GF(q).  Then the total number of power algebras of dimension m

of A   is  s 0 (q)  if

(a) A   is alternative, my 2 or

(b) A   is a noncommutative Jordan algebra, m > 3.

This   theorem,  too,  has  an  analogue  for    nilpotent p-groups.

Theorem 3.   Under the above assumptions about A, D, P suppose that

A  is a zsq-algebra and P  is a principal ideal.   Then s   (A) = 1 + q (q ) if

A  is not cyclic.   Otherwise  s   (A) = 1.

2.  Proofs.  We often use the following well-known fact about nilpotent

algebras [3], [4]. A  is generated by r elements if and only if dim A/cp(A)

< r holds, especially, A   is a power algebra if and only if dim A/cp(A) = 1.

In this case  cp(A) = PA + A     is the unique maximal subalgebra.  Further

simple facts about nilpotent algebras can also be found in [A].

First we treat a special case.  Let A  be a nilpotent noncommutative

Jordan algebra over GF(q) of dimension n > 4  or alternative of dimension

n y 3. Moreover let there exist a maximal subalgebra  B  generated by a

single element  b.  Since  A   is nilpotent, A    CB  and dim B = n - 1 > 3

(resp. > 2) holds. A noncommutative Jordan algebra is power associative,
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so B   is associative in both cases.  Thus

B= \ L   a.b\   a. £GF(q)\,        bn = 0.

Lemma 1.  There exists a £ A\B  such that

(i) A = B + GF(q)a;

(ii) aA, Aa CB3.

Proof.   (1) Let A   be a noncommutative Jordan algebra and n > 4.

Choose a' £ A\B.   From a'b £ A2 C B   we get a'b = ab + f(b)b.   A   is nil-

potent, so a = 0 and a = a' - f(b) £ A\B  fulfills (i). Moreover ab = 0. In

a noncommutative Jordan algebra the following identities hold [5]:

(x'y)x = xAyx),       (yx*)x = (yx)x\        xl(xy) = x(x'y),       i £ N.

If b'a = *£n~\a..y   it follows that
7=2    ii

0 = bi(ab) = (bia)b =   Y   a..b'+1

n- 1

z
7=2

n- 1
and  a.. = 0  it j 4 n — 1.  We have proved Bcz CB""   .  In the same manner

we prove aB CB"-1.

Let a2 - ab - ßb2 eß3.  From the Jordan identity

(a+ tb)((a+ tb)\sa+ b)) = («+ tb)\(a+ tb)(sa+ b)),        s, t £ GF(q),

follows

b"-Kt2+ ß)aiTi_x-b\t2 + ß)ßs-bAt2+ 2ß)as-b2a2s^0 U5).

So a = ß = 0 since  è , ¿>, b     are linearly independent.

(2) If A   is alternative the proof is analogous. A   is indeed associa-

tive since it is generated by 2 elements, and we only have to use other

identities. Q.E.D.

Lemma 2.  There are exactly q   maximari subalgebras which are power

algebras.   They are generated by elements  b + ra, r £ GF(q).

Proof.   Each maximal power algebra B    is generated by an element

ra + sb + bf(b).   It contains A2 Z>B2  and therefore ra + sb.   If s = 0, then

by Lemma 1 (rcz + bf(b))2 £ B     holds.   But then the codimension of B'  in

A   is not  1, so we can assume s = 1.  On the other hand, b + ra  generates

a subalgebra B    and the following hold:
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(a) (b + raY = bl (Bi + l)  if  1 < i_< n - 1;

(b) if 77 > 4  then

(b + ra)"-1 = (b + ra)n-\b + ra)2 = (bn~i + bn-3g(b))(b2 + b2h(b)) = bn~ l;

(c) if ?z = 4 (then A   is associative) then

(b + ra)7' = ¿73 + r(ba2 + bah + ab2) + r2(a2b + aba + ba2) + r3a^ = ¿>3.

This implies B    = B  .   Since B   is a power algebra, dim B   = dim B2 + 1 =

dim B2 + 1 = dim A - 1  holds. So B    is maximal; B   = ß'.  Q.E.D.
r '      T x-

We now turn to the general case.  The number of subalgebras  B  ^A    +

PA  of index qT in A   is denoted by cp,    , where k  is the index of A    + PA

in A.   cp,      is the number of vector spaces of codimension k - r  in a  k-dim-

ensional vector space.  Therefore cb,   . - ]£  ~fíqr and cp,   2 = 1 (q  )   if k > 2.

Proof of Theorem 1.   (i)  The result about s, (A) is well known.

(ii) If A   is a power algebra generated by an element a, then A     is the

2        ^
unique maximal subalgebra, which is not a power algebra, since a , a^  are

linearly independent.  Then s   (A) = S       ,(A  ). So we come down to the case

that A   is not a power algebra.  In that case there are subalgebras of  codi-

mension 2 containing   A  .   We apply the enumeration theorem and use induc-

tion on m.   Let C be the class of subalgebras of codimension m.

m = 2: s2(A) s |'<E| = £ «,(B)-?- Z «2(fl) (<?2).
CodimB= 1;A2CB Codim B= 2; A 2cB

Let A   contain a power algebra B   of codimension 1.  From m = 2 follows

dim A > 3 (resp. dim A > 4).  By 'Lemma 2 there are exactly q  power algebras

of codimension 1.

s2(A)s £ sAB)-q. £ s0(ß)

Codim B=1;A2C B Codim B = 2 ;A 2c B

= (i + q)((f>k i - q) + q - q<Pk 2 = i + q (q )•

If A   contains no power algebra of codimension 1 then, by (i), s  (A)

(1 + </)<£,   , - <?cp\      = 1 +q  (q2).

m y 2: By induction follows

s ,U>-        Z sm_/ß>-*-        Z        *m_2^
CodimB=l;A2cB CodimB= 2; A 2cB

= (i+ q)<pkA- q<Pk,2- 1+ ? U2)-
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Proof of Theorem 2. 'Let C  be the class of power algebras of codimen-

sion 772.  The case ttz = 1   is proved by Lemma 2.  Now we apply the enumer-

ation theorem and use induction on 772.

Proof of Theorem 3. If A is cyclic, that is A = Dzz, then Pzz is the

unique subalgebra of index q. But Pu is cyclic; Pzz = D(pzz) since P is

principal.

Now assume that A   is not cyclic.  The result about s .(A) is well

known.  Suppose 772 > 2  and let C  be the class of subalgebras of index qm.

Then

sjA)= £ n^tíi-q. Z n2(B)

[A:B]=9;A2CB [ A: ß]=c/2; A 2CB

Z '«-/«- f Z Sm_2(B)(q\
[A:B]=q;A2CB [ A: s]=c/2; A 2Cß

If all subalgebras of index q  are not cyclic the proof is done by hypothesis

on 772 - 1.  So suppose that A   contains a maximal subalgebra Dv, that is,

A = Du + Dv, A    + PA C Dv.   If pzz = sv, s 4 P, then A  is cyclic, generated

by v. Therefore s = s p holds.  So  P annihilates zz  = u — s v.   The subalge-

bras D(v + iu'), i £D/P, are exactly the maximal cyclical ones.  There are

q  of that kind.   By hypothesis on 772 — 1   we conclude

sJa) = (i+ q)(<pkA- q) + q- q<Pk<2= 1+ q(q2)-

REFERENCES

1. P. Hall, A contribution to the theory of groups of prime power order,    Proc.

London Math. Soc. (2)36 (1934 X 29-95.

2. J. Knopfmacher, Arithmetical properties of finite rings and algebras, and

analytic number theory, J. Reine Angew. Math. 252 (1972), 16-43-    MR 47 #1769-
3. J. Knopfmacher and G. E. Burger, Submodules, subalgebras and ideals in

finite modules or nilpotent algebras over Dedekind domains, J.  London Math. Soc.

(2)5 (1972), 681-690.    MR 47 #1852.
4. R. L. Kruse and D. T. Price, Nilpotent rings, Gordon and Breach, New York,

1969-    MR 42 #1858.
5. H. Braun and M. Koecher, Jordan Algebren, Die Grundlehren der math.

Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwen-

dungsgebiete, Band 128, Springer-Verlag, Berlin and New York, 1966.     MR 34

#4310.

UNIVERSITÄT HAMBURG, 2 HAMBURG 13, WEST GERMANY


