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ON THE UNIQUENESS OF SOLUTIONS

OF CERTAIN DIOPHANTINE EQUATIONS

JOSEPH B. MUSKAT AND YUN-CHENG ZEE

ABSTRACT. An arithmetic proof by L. E. Dickson of the uniqueness of

the integral solutions of a certain quaternary quadratic form is generalized

to include several similar forms which have appeared recently in cyclotomy.

In his exposition of cyclotomy of order 5, Dickson studied the quater-

nary quadratic form

(1) I6p = x2 + 125w2 + 50«2 + 50^2

with the side condition

(2) xw = v   — u   — Auv,

where  p is any prime = 1 (mod 5K   He gave an arithmetic proof, and an alge-

braic proof, that (1) and (2) have essentially a unique integral solution.

There are eight related solutions; if (x, w, u, v) is a solution, so are  (x, w,

— u, — v), (x, — w, v, — u), and  (x, - w, — v, u).   The other four are obtained

from these by reversing all the signs [l, Theorem 8].

In recent studies of cyclotomy there have appeared several other exam-

ples of forms

(3) kP = CjX2 + c2w2 + c^u2 + cAv2,       cx, c2, Cy c4> 0,

p any odd prime = a  (mod e),  with the side condition

(A) d xw = d v    + du    + d uv,

where all coefficients are relatively prime to  p.   The symbols   x, w, u and  v

denote rational linear combinations of coefficients of Jacobi sums (if a = 1)

or Eisenstein sums;   k is taken to be greater than  1   where necessary to in-

sure that x, w, u and v are integers.   Thus for each pair (e, a) to be consid-

ered here,   there are integers   c,, c2, c,, c ., d., d-, íz",, d.  (which depend

only on  e and a) such that for every  p ~ a (mod e), (3) and (4) are solvable

in integers.
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In this paper, we generalize Dickson's arithmetic proof to show that a

number of these forms have essentially unique integral solutions.

First we express  u and  v linearly in terms of x and  w.   All congru-

ences will be modulo  p.

Assume that the following five restrictions are satisfied by the coeffi-

cients in (3) and (A).

(5) C4=C3,

(6) d3 = -d2,

(7) c xc 2(Ad] + d2.) = c\d\,

(8) clc2  *s a 1ua<iratic residue of p,

(9) [-1 ± 2sd2/(c,d )]c /c,   are quadratic residues of p,

where  s   satisfies  s2 =c,c,.

Transpose the last term in (4), apply (6), and square:

d22(v2 -u2)2 = (dxxw - dAuv)2,

(10) d22(v2 + u2)2 = (d xw - d4uv)2 + Ad22u2v2.

Transpose (3), regarded as a congruence  (mod p),  and apply (5):

(11) cA.v2 + u2) = -CjX2 - c2w2.

Substitute (11) into (10):

d2(-c.x2 - c2w2)2 = c2(d.xw - d uv)    + Ac,d2u v ,

d\(cxx2 - c2w2)2 = (c]d\ - Ac xc2d\)x2w2

- 2cld,dAxwuv + c2Ad2 + Adl)u2v2
3    14 3     4 ¿

= x2w2c xc2d2A - 2xwuvc2?d¿dx + u2v2c*d2/(c fj,

upon two applications of (7),

= (xwc c 2d A - uvc d A /(c^^.

Take the square root and separate  uv,  choosing the sign of s  appro-

priately:

(12) c^d.uv = c.c7d xw + sdAc x   - c2w ).
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Add  2/(c3¿j)  times (12) to (11):

cA^v2 + 2uv + u2) s CjX2(- 1 + 2sd2/(c3dl))

(13)
+ 2xz^c1c2zz'4/(c3zz'I) + c2z^2(-l - 2sd2/(c d^).

In view of (9), define

m    = [-1 + 2sd2/(c dA]c ^/c  ,

(14)

i24-l-, 2sd2/(c3dl)]cl/cy

mh2 S [1 - 4clC^2/(c2ci2)]c2/c2 = [^¿/(c2^)]2,

by (7).   Having picked  m,   choose the sign of /  so that

(15) mt = sCj^AcjíZj).

The congruences

(16) m2 +■ t2 = -2c/cy        m2 - t2 = AsCld2/(c2d¿

are noted here for later reference.   Now (13) can be written as

v   + 2uv + u   = x m    + 2xwmts/c. + w t c J c  ■

v + u = q Axm + wts/c  ),     q    = 1.

Similarly, subtracting  2/(c,d^l  times (12) from (11) yields, after simpli-

fication,

v   - 2uv + u   = x t   - 2xwmts/c. + w m  c J c.;

v - u = q Axt - wms/c ),     q    = 1.

Thus

(v + u)(v - u) = qxq2\A\c 1x2 - c2w2)sdA - Axwc jC2d ]/(c2dA,

by (15) and (16).   Apply (12) and regroup:

v2 - u2 = qlq2[uvdA/d2 - xwc yc2(d2A + Ad2)/(c2d {d2)]

s q  qAd uv - d xw]/d2,

by (7).   Now apply (A) and (6):

v2 -u2 = -qxq2(v2 -u2).
■

Hence if  v2 4 u2, q2 = - qv   If v    = u2,  one of qx  and  q2  can be cho-

sen arbitrarily; choose that one so that  <J2 = - q,.   (The latter situation ac-

tually occurs.) In either case,
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2v = q Ax(m - t) + w(t + m)s/c]],

2u = q Ax(m + t) + w(t - m)s/c ^].

But c/j  can be discarded, for the effect of changing the sign of  q.   can be

achieved by changing the signs of both m  and  /.   Thus

2v = x(m - t) + w(t + m)s/c.,

(17)
2zz = x(??2 + t) + w(t - m)s/c ..

Thus there are two signs to be chosen, those of 5   and m.

Let (x, w, u, v) be a solution of (3) and (A).    (- x, — w, — u, — v)   is an-

other.   Changing the signs of 772  and  t gives two more,(x, w, — u, — v)  and

(- x, - w, u, v).   Changing the sign of s   interchanges m    with  t ,  and the

sign of the product mt  is changed (see (14) and (15)).   Thus replacing s, w,

m, t by - s, - w, t, - m in (17) gives the solution  (x, - w, v, - u).   The other

three solutions are obtained by changing the signs of m and  t or x  and  w.

Fix the signs of s  and  772  in <\1) and let

(18) (x, w, u, v), (x , w , u , v )

be two solutions.   We have

Aw' = xx'(m - i)    + ww'(t + m) c J'c   + (xw' + x'w)(m2 - t )s/c..

Auu   = xx'(m + t)2 + ww'(t - m)2c2/c x + (xw' + x'w)(t2 - m2)s/c j.

zzzz' + vv' = (xx' + ww'c Jc .)(m   + t )/2 = (-c xx' - c2ww')/c,,

by (16).   Hence

(19) if A = IcjXx' + c2ww' + c,uu' + c,vv'\, then  A = 0 (mod p).

Multiply together the representations of  kp given in (3) corresponding to

the two solutions in (18):

(kp)2 = A2 + c cAxw' - x'w)2 + c cAxu   - x'u)    + c jC Axv' - x'v)

(     ' 1      1 1 \2 1      1   '     1 \2        2/1        1 \2+ c c (wu   - w u)    + c2c (wv   - w v)    + c Auv   - u v)  .

This implies that A < kp.

In order to prove that the two solutions in (18) are essentially the same,

one first verifies that (5) through (9) are satisfied.   This includes actually

exhibiting  m  and  t.   Having thereby justified the expressions for zz  and  v

given in (17), one then seeks to show that A = kp,  so that

(21) xw   = x w,     xu   = x u,     xv   = x v.



UNIQUENESS OF SOLUTIONS OF DIOPHANTINE EQUATIONS 17

In every case to be considered here, the greatest common divisor D  of

c2  and  c    = cA does not divide  k,  and  c, = 1.   Then according to (3)  D-fx.

Hence  x 4 0,   so that (21) implies  w/x = w/x , u/x = u /x , v/x = v /x .

Thus if A = kp, then x' = ±x, w' = ±w,u'= ±u and v = if.   That CjX is

not divisible by  D  implies, furthermore, that in (19),  A / 0.   Consequently,

if k = 1,  it suffices to verify that (5) through (9) hold.

Although the notation here is modeled after that of Dickson, there are

differences.   If p = 1 (mod 5)>  and (1) and (2) are satisfied, choose  r such

that  ord  r = 5.   Set

m ^ (2r - r2 + r3 - 2r4)/25,        t ^ (r + 2r2 - 2r3 - r4)/25,

s= 5(r_,2_r3 + r4)> s2=125.

There is also the form having k = 1, c   = 1, c2 = c, = c. = 5, ¿j = d2 = - d?

= - dA = 1  [2, Theorem 8l.   Set

m = (r _ r2 + r3 _ r4)/5) ; . (r + r2 _ r3 _ r4)/5j

TOi = -(r- r2 - r3 + r4)/25 = -s/25,      s2 = 5.

If p = 1 (mod 16), then & = 1, c. = 1, c = c, = c . = 8, dx = ¿2 = - i/,

= 1, ri. = 2 [3, p. 236]. (Uniqueness is mentioned there.) 8 is a quadratic

residue of p.   Choose  r so that  ord r = 16.   Then

s=2(r2+r14),     m^(r+r7)/A,     t = -(r3 + r5)/4.

52 = 4(r4 + 2 + r12) = 8.

m2 h (r2 + 2r8 + r14)/l6 = - 1/8 + s/32.

Í2 = (r6 + 2r8 + r10)/l6 ^ (-r14 - 2 - r2)/l6 s - 1/8 - s/32.

ra; ^ _(r4 + r6 + r10 + r12)/l6 s s/32.

Hence (9), (14), and (15) are satisfied, and the proof of uniqueness is complete.

If p = 7 (mod 16),  there is a form with k = 1,   c^ = 1, c2 = c   = c. = 2,

rfj = 2, rf2 = - <s?, = 1, «?4 = - 2 [2, (6.1), (6.2)1.   2 is a quadratic residue of p.

Choose r S GF(p2) such that r16 = 1 but r8 4 L   Then s = r2 + r14, 772 = (r+ r7)/2

and  í = (r3 + r5)/2  all lie in the ground field.   Also

S2 = 74+2+rI2 = 2,

m2 = (r2- 2 +r14)/A =-1/2 +s/A,

t2 = (r6 - 2 + r10)/A = - 1/2 - s/A,     mt = -s/A.

Uniqueness is established.

Now consider the following form for p = 1 (mod 60):
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cl=l,    c2 = 45,    c3 = c4= 15,    dl = d2 r3 = -¿4=l

[A, Theorem 2].   Choose z  such that  ord z = 60.   Set r = z12, R = z5.   Then

s=3(r-r2-r3 + r4),

m = (R+ Rll)(r-r2 + r3 - r4)/l5,

t=(R + Pn)(r+r2-r3-r4)/15,       s2 = 9 ■ 5 = 45,

m2 h (P2 + 2 + R 10)(r2 + r4 + r6 + r8 - A - 2r3 + 2r4 + 2r - 2r2)/225

= 3(- 1 - 4 + 2s/3)/225 = - 1/15 + 2s/225.

Similarly,

i2 = -1/15 - 2s/225,        77z/= 3(-r+ r2 + r3- r4)/225 = -s/225,

Uniqueness is proved.

Finally we present a form for which we have been unable to establish

uniqueness.   If p = 1 (mod 13), then  k = 16, cx = 1, c2 = 13, c   = cA= 26,

d^ = 1, d2 = - d^ = 3, dA = - A [A, Theorem l].   13 is a quadratic residue of

p.   Choose  r so that ord  r = 13.   Define the periods yQ = r + r   + r1, y. =

r2 + r6 + r\ y2 = r4 + rlf+ r10, y^rB + r11 + r7   [1, p. 392].    Then    s s yQ

+ y 2 - y i - y y m - (y o ~ y 2^/13, í =s(yj - y3)/13.   From the multiplication

table for the periods

>'l

y2

^3

y, + 2y

!-y3

3 + yj + y;

-l-y,

y, + 2y;

l-y:

3 + yn + y-

y^ + 2yc

■i-y.
yn + 2y

y0 >i :

it is easy to verify that

s2^ 20+7(y0 + y1 + y2 + y3)S 13,

m2 = (-6+2y0-y1 + 2y2-y3)/l32

= (-6M+ 3s/2)/l32^-l/26+ 3s/338,

/2 = -l/26- 3s/338,

« - (y0 - y2)(y i - y3)/132 2 (-y0 + ?i - y 2 + y3)/132 = -s/1?:
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Since in this case  k = 16, completing a proof of uniqueness requires

showing that A = I6p.   In other words, by (19), if A = Mp,  M  cannot assume

any of the integer values from 1 to 15.   Regarding (3) as a congruence  (mod 2)

gives x = w (mod 2)  and x   = w   (mod 2). Hence xx   + l~5ww    is even, so M

is even, by (19).   According to (20),  M2 = 162 (mod 13)-   These conditions

exclude all possible values of M  except 10.   We have been unable to elimi-

nate this possibility.

A computer search of all primes  p = 1 (mod 13), p < 10, 000,  revealed

no instance of nonunique solutions.   We wish to thank the University of Pitts-

burgh  Computer Center for granting  access to its IBM 7090/1401 system,

partially supported by National Science Foundation grant G-11309.
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