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ZEROS OF POLYNOMIALS OVER FINITE
PRINCIPAL IDEAL RINGS
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ABSTRACT. Let R be a finite commutative ring with identity. For f €
R[Xl’ cee, Xn] denote by N(f) the number of zeros of f in R™. For inte-
gers n,d > 1 denote by 4 the greatest common divisor of the integers
N({); fe R[Xl’ cee, X ] deg f=4d. J. Ax has shown that if R is a field,
then A nd= IR|® where a is the integer satisfying @ < n/d<a +1. In
this paper, A n,d is computed in the case that R is a principal ideal ring.

Throughout, let R denote a finite commutative ring with identity, and
let R[XI, cee, Xn] denote the ring of polynomials in n variables over R,
n>1. Let f ER[Xl, cee, Xn]. An element x = (xl, cee, xn) € R™) is
called a zero of f if flx) =0. Let N(f) = N(f, R) denote the total number of
zeros of [ in R, Let A, =4, 4AR) denote the greatest common divisor
of the integers N(/); /€ R[X|, ..., X ], deg[=d.

Suppose deg f=1. Then /= [, + [, where f,= /(0), and where fy is
linear when considered as a function from R to R. Thus, either N(f) =0
(if fo ¢ Im f,) or N(/) = |Kern f,|. But [Kemn f | = |R™)|/|Imf,|. It follows
easily from this that A 1= |IR|"~1. More generally, Ax [2] has shown
that if R is a field, then A nd= |R|% where a is the integer defined by @
<n/d< a+ 1. In this paper, we compute An,d in case R is a principal

ideal ring.

1. First assume R is a local principal ideal ring. Let g denote the
order of the residue field of R, and define & by q’e = |R|. Assume R is
not a field, i.e. that £ > 2. Let n be a prime element of R. The following

version of Hensel’s lemma is useful:

Lemma. Suppose glx)=rj+r X+ - - +71, x4 € RIX]) is such that
alr,i=2,0,dimgrg. Then g bas a unique zero in R.

Proof. X, == ro/rl is the unique zero of g modulo #. By induction, if

. . 1 _ . .
%, is the unique zero of g modulo 7*, then x,,; = x, - g(xi)/fl is the unique
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+
zero of g modulo 7' !

. Since #* = 0, this implies %, is the unique zero of
g in R.
By this lemma, A =1 for n = 1. Hence, we may assume 7, d > 2.

The computation of A, in this case is covered by the following

Theorem. Suppose R is a finite local principal ideal ring which is not
a field; notations as above. If n,d > 2, then A = q'B where B is the inte-
ger defined by B<nk/2<f + 1.

Proof. Let /eR[X,---, X,), deg [ = d. Partition the zeros of / in
R™) into classes by considering two zeros (xl, cee, xn), (x'l, ceey xr:) to
be equivalent if x, = xl.' mod 7 for i =1, ---, n. We show qB|N(/) by show-
ing q'B divides the number of zeros in each class. Let (xl, ceey, xn) be a
zero of f. Note that [(x1 +aX s, x, + an) is of the form 7g, + n2g2 +
ceet ﬂdgd where g, € R[Xl, cee, Xn] is homogeneous of degree 7, i= 1,
-++, d. Thus we wish to count the number of zeros of

d-1
g=8,tmg,+ r+m g,

in (R/zk= 1™,

If k=2, qﬁlN(g, R/m%~1) by Ax’s result since g = g,. If one of the
coefficients of g, is a unit, we may assume, without loss of generality, that
it is the coefficient of X,. Let Yyr oy, € R/7*=1 be arbitrary and let
h(X) = g(X, Yoot yn). Then by the Lemma, » has a unique zero in R/n*-1,
Hence N(g, R/a*~1) = gn=Dk=1)  Thys

gPINGg, R/t*™ D) = (- Dk -1 > B
e (n- Dk -1)>nk/2-1

=mr-2k-2>0
which is true since 7, £ > 2 by assumption.
If, on the other hand, # divides all the coefficients of g, write g1 =
ﬂgll , and let

’ ’ d-2
8 =8 +8,t Mgyt v g

Then N(g, R/7*~1) = N(g’, R/nk'z)q". By induction (or by Ax’s result, if
k=3), N(g's R/n*~?) is divisible by ¢”, y < n(k-2)/2<y + 1. Hence

N(g, R/m¥=1) is divisible by ¢"*”. But n +y = 8. Thus ¢P|N()) for every
[ € R[Xl, ceey, Xn] of degree d, so qBIAn,d.

We deal with the reverse divisibility in several steps. First note that

A, is a power of the characteristic of the residue field of R. For example,
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consider any polynomial [ € R[Xl, ceey Xn] of the form f= /[, + [, +af, +

-+ mf, where f . is homogeneous of degree i and where at least one of
the coefficients of f, is a unit. Applying the Lemma as before,  has
g™~ Dk zeros, so A, d|q’°(""l).

We now complete the case d = 2 by constructing, for each integer n > 2,

a polynomial [ € R[Xl, sy Xn] of degree 2 such that N(f) = - qﬁ mod q'Bﬂ.
If n=2 take {=X,X, - 1. Then N(/) = g% - q*~1=-¢*" 1 mod ¢*. For
n=2t,t>2 define

f=XX,01 X)X gt H X Xy

For 0< s < k there are g% - g(s=1)¢

tuples (xl, ceey xt) such that Rx,
+~--+th=R77k"s

, and for each such tuple, the linear function ()’1’ cees

k—s kt=s solutions. Thus

Y) ™ X\yq+ e+ Xy, maps R onto Re*~S, sohas ¢
k
N(f) =g+ 3 (g5t - gls = Dtygke=s,

s=1

For t > 2, this is congruent to — qkt‘1 modulo g*!.

For n=2t+ 1, t > 1 take

€y 2
[=X X pq e XXyt m X5

where € =0 or 1 according to whether & is even or odd. For 0<s <k
there are

(qst _ q(s— l)t)q(k +€)/2+ 8(s)
tuples (xl, cets X, x) satisfying

Rx | ++++ + Rx, = Rr*~% D Rax?,

where 8(s) is the greatest integer < s/2. For each such tuple, x,y, + -+ +

kt-s

Xy, + 7x2 =0 has g solutions (yl, sy yt)' Thus

k
- 5 kt-—
N(/) - q(k+e)/2qkz+ Z (qst _q(s 1)t)q(k+€)/2+ (S)q t-s_
s=1

(k+€)/2+kt-1 (k+€)/2+kt_

For ¢t > 1 this is congruent to — g modulo ¢

To handle the case d > 3 write d = 2r + s where s = 0 or 1 and define
k-1
g(xl, cee, xn) = /(xl, cee, xn) + 77 /(xl, cee, Xn)’xsi’

where [ is the polynomial of degree two constructed in the previous step.

Then g has the same zeros as f, and g has degree d, so the proof is complete.
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Remark. Let R be a local principal ideal ring. It follows from the above
formulae for An 4 (ot from Ax’s formula if &£ = 1) that An dlAn 4 if d>d'.
We will see later that this holds even when R is not local.

2. Now let R be any finite commutative principal ideal ring with identity.
Then R decomposes canonically as R =R, @ --- @R where the R, are
local principal ideal rings [1, p. 90]. This decomposition induces a natural
isomorphism

S
RIX ooy X 1 = @1 RIX -y X ),
i=

and if [ € R[Xl, cee, Xn] decomposes as (f}, + -+, fs) under this isomorphism,
then deg /= max{deg [i7 i=15000, s} and N(f, R) = HleN(/i, Ri)- It fol-
lows from this, together with the remark, that

S
A, R =TIl4a, (r).
i=1

This completes the computation of A, for R any finite commutative prin-
cipal ideal ring with identity.
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