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ABSTRACT.    Let fi   be a finite commutative ring with identity.   For / e

Z?[Xj, • • • , X ]  denote by N(f) the number of zeros of / in if'     .   For inte-

gers 72, d  > 1  denote by A      , the greatest common divisor of the integers

N(fii   f e Z?[Xj, • •• , X], deg/= d.   J. Ax has shown that if R   is a field,

then A      , =   \R\     where   a  is the integer satisfying   a  <   n/d < a + 1.   In

this paper,  A      ,  is computed in the case that  if   is a principal ideal ring.

Throughout, let  R  denote a finite commutative ring with identity, and

let  R[Xj, ■ • • , X  J denote the ring of polynomials in  72  variables over  R,

72 > 1.   Let f £ RYX v ■■■ , Xj.   An element x = (x,, •••>*„) e RM is

called a zero of / if f(x) = 0.   Let /V(/) = N(f, R) denote the total number of

zeros of  / in  Rl    .   Let  A     , = A     ,(R) denote the greatest common divisor
' n.d n,d b

of the integers  N(f);  f £ R[X ,, . . ., X ], deg f = d.

Suppose  deg / = 1.   Then / = /Q + /,   where /. = /(0),   and where /.   is

linear when considered as a function from  R*-"' to  R.   Thus, either  N(f) = 0

(if fQ 4 Im /j) or ZV(/) =  |Kern/j|.   But   |Kern /J = |Z<(n)|/|lm /j|.   It follows

easily from this that A    j =  |ß|"-1.   More generally, Ax  [2] has shown

that if R  is a field, then A      , =   \R |     where  a is the integer defined by   a

< n/d < a + 1.   In this paper, we compute An d in case  R  is a principal

ideal ring.

1.   First assume  R is a local principal ideal ring.   Let q denote the

order of the residue field of  R,  and define  ¿by   q   =  \R\.   Assume  R  is

not a field, i.e. that k > 2.   Let 77 be a prime element of R.   The following

version of Hensel's lemma is useful:

Lemma.   Suppose g(x) = rQ + rl X + ■ • ■ + r   Xd £ RYx]  is such that

n \r., i = 2, ■ • • , d, n \ r..   Then g has a unique zero in R.

Proof.   », =- r0/ri  is the unique zero of g modulo 77.   By induction, if

x. is the unique zero of g modulo nl,  then  x. + . = x. - g(x)/rl is the unique
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zero of g modulo n1     .   Since 77    = 0,  this implies xfe  is the unique zero of

g  in  R.

By this lemma,  A^ d = 1  for 72 = 1.   Hence, we may assume  n, d > 2.

The computation of A^ rf in this case is covered by the following

Theorem.   Suppose  R  is a finite local principal ideal ring which is not

K,d
ger defined by ß < nk/2 < ß + 1.

a field; notations as above.    If n, d > 2,   then A    d = q     where ß  is the inte-

Proof.   Let / £ R\Xv ■ ■ ■ , X ], deg / = d.   Partition the zeros of / in

R^"' into classes by considering two zeros  (x,, ■ ■ ■ , x ), (x\, • - • , x ') to
° I 72 1 n

be equivalent if x. = x'.   mod 77 for 2 = 1, • • •, 72.   We show q@\N(f) by show-

ing q^ divides the number of zeros in each class.   Let (x,, • ■ • , x ) be a
0 In

zero of /.   Note that f(xl + nX¡, • • ■ , xn + nXn) is of the form 77g j + ?72g2 +

• • • + 77 gd where g    £ RYX l, ■ ■ ■ , X  ] is homogeneous of degree  i,  i = 1,

• ■ ■ , d.   Thus we wish to count the number of zeros of

g = g, + "g2 + ••• + n  ~  Srf

in (R/rrk-ï)(n).

If k = 2, qß\N(g, R/nk~ ')  by  Ax's  result since g = gr   If one of the

coefficients of gj   is a unit, we may assume, without loss of generality, that

it is the coefficient of X..   Let y?, • ■ • , y    £ R/rr be arbitrary and let

MX) = g(X, y., • • • , y  ).   Then by the Lemma,   h  has a unique zero in R/n       .

Hence N(g, R/nk- l) = q{n~ l )(k~ l >.   Thus

qß\N(g, R/nk~ l) ~ (72 - 1)(* - 1) > ß

«=, (B -   l)(k  -   1) >  72^/2 -   1

<=>(«- 2)(k - 2) > 0

which is true since  n, k > 2  by assumption.

If, on the other hand,  77 divides all the coefficients of gj,   write gl =

77g. ,  and let

g' = g[ + g2 + 7Tsi + " • + nd~1gci-

Then  N(g, R/nk~X) = N(g', R/nk-2)q".   By induction (or by  Ax's result, if

• = 3),  Mg\ R/rr*" 2) is divisible by  qy, y < n(k- 2)/2 < y + 1.   Hence

N(g, R/rrk~ l)  is divisible by qn+y.   But 77 + y = ß.   Thus   q^\N(f) for every

/ £ R[X,, • • • , Xj of degree d,  so ^M,,^-

We deal with the reverse divisibility in several steps.   First note that

A      , isa power of the characteristic of the residue field of  R.   For example,
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consider any polynomial / £ R[X1? • • •, X^] of the form / = fQ + f. + 77/2 +

■ • ■ + nfd   where /. is homogeneous of degree  i and where at least one of

the coefficients of /.   is a unit.   Applying the Lemma as before, / has

q(n-Dk   2eroSj  so   A^ J?*(«-n

We now complete the case d = 2  by constructing, for each integer n > 2,

a polynomial / £ R[Xj, • • • , Xj  of degree 2 such that N(f) = - qß mod q@+1.

If 72 = 2  take / = X jX2 - 1.   Then  N(f) = qk - qk~ l = - qk~ l mod qk.   For

n = 2t, t > 2 define

/=x1xí + 1 + x2xí + 2 + -.. + xíx2í.

For 0 < s < k there are  qst - q^s~ 1't tuples  (xj, • • • , x )  such that Rx.

+ • • • + Rx   = Rn       ,  and for each such tuple, the linear function (y,, • • • ,

y)—>x^y   +.-. + xy   maps R      onto R77 ~s, so has q   ~s solutions.   Thus

k
N(f) = qkt+  £   (qst -q(s-1)l)qkt-s.

s = l

For / > 2,  this is congruent to - q modulo  q    .

For n = 2f + 1,  £ > 1  take

/=X1X2+1 + ---   +  X2X22  +  /X22+1'

where £ = 0  or  1   according to whether  k is even or odd.   For 0 < s < k

there are

,St __     (S-I)ÍN    (fe+e)/2+S(s)

tuples (xj, • • • , x , x)  satisfying

Rxj + ••• + Rxt = Rtt*-5 D Réx2,

where 8(s) is the greatest integer < s/2.   For each such tuple,  x.y, + ••• +

x y   + tt£x2 = 0 has q solutions  (y ., ■ • • , y ).    Thus

M/) = ̂ +e)/V¿+ Z (^'-^-1V*+i)/2+8(sVt-s.

s = l

For  i> 1  this is congruent to - q(^y/2+kt-l  modulo  ^4+0/2+*/,

To handle the case d > 3  write 22? = 2r + s  where s = 0 or  1   and define

g(Xv ■■-,Xn) = f(Xl, ■■-, Xn) + nk-1f(Xv ■■■, XnYX\,

where / is the polynomial of degree two constructed in the previous step.

Then g has the same zeros as /,  and g has degree d, so the proof is complete.
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Remark.   Let  R  be a local principal ideal ring.   It follows from the above

formulae for A     , (or from Ax's formula if k = 1) that A     ,\A     ,'  if d > d .
n ,a ' n ,d '    n,a —

We will see later that this holds even when  R  is not local.

2.   Now let  R  be any finite commutative principal ideal ring with identity.

Then  R  decomposes canonically as  R = R, © • • • © R     where the  R    are

local principal ideal rings [l, p. 90].   This decomposition induces a natural

isomorphism

R[Xj, •••, Xj Si  © R.[Xj, •••, X],
2- = l

and if / £ R[Xj, • • • , Xn\ decomposes as  (/J? • • ■ , / ) under this isomorphism,

then  deg /= maxideg f.:   i = 1, • • ■ , s\  and  N(f, R) = U^=lN(ft, R.).   It fol-

lows from this, together with the remark, that

5"

a„ Xr) = IT A    ,(R .).
n,a *■■*      r2,£2      i

¿ = 1

This completes the computation of A     , for R  any finite commutative prin-

cipal ideal ring with identity.
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