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THE DIMENSION OF THE RING OF COEFFICIENTS

IN A POLYNOMIAL RING

JIMMY T. ARNOLD

ABSTRACT. A  and B are commutative rings with identity.  We say that

A   and B   are stably equivalent provided there exists a positive integer n

such that the polynomial rings ^[A7,, '•• , X ]  and StF,, •••,}']   are

isomorphic.  If A   and ß   are stably equivalent, then they have equal Krull

dimension.

The question answered in this paper arises from recent investigations

concerning the uniqueness of the ring of coefficients in a polynomial ring

(cf. [l]—[6]).  In [6], Höchster has given an example which illustrates that

stably equivalent rings need not be isomorphic.  Several related questions

are posed by Eakin and Heinzer in [5].  In particular, if A  and  B  ate stably

equivalent rings, then Eakin and Heinzer ask whether dim A = dim B (dim R

denotes the Krull dimension of the ring R). We shall presently show that this

Received by the editors February 1, 1974.

AMS (MOS) subject classifications (1970). Primary 13B25; Secondary 13A15,

13C15.
Key words and phrases. Polynomial ring, Krull dimension, coefficient ring.

Copyright © 1975, American Mathematical Society



RING OF COEFFICIENTS IN A POLYNOMIAL RING 33

is indeed the case.  Our proof is based on the following well-known result.

(A)  // P  is a prime ideal of the ring  R  and if Q. C • • • C Q,   is a chain

of k distinct prime ideals of the polynomial ring R[X., • • • , X   ]  such that

Q . C\R = P for each  i, then k < m + 1.

This result is the natural generalization of Theorem 37 of [7] and can be

proved in a similar fashion.

Theorem.   // A  and B  are stably equivalent, then dim A = dim B.

Proof.  We assume without loss of generality that A[X] = B[y], where

X = jX. \m,   and  Y = \Y. Y"_.   aie indeterminates over A  and B, respectively.

It suffices to consider the case in which A  and  B are integral domains and

since the result clearly holds if A  has infinite dimension, we assume that

dim A = «  is finite.  If « = 0, then  dim A = dim B; in fact, A = B (since the

units of A[X] = B[Y]  ate precisely the units of A (or B)). Thus, we suppose

that « > 1   and we show that dim B >n. This is clear if « = 1, so assume

that « > 2 and let (0) C P. C • • • C P    be a maximal chain of prime ideals

of A. For a subset S of A  we shall let  X  S denote the set of zrz-tuples of
m *

elements of S.  If  a »= (a., • • • , a   ) £ X  A, then for  1 < k < «  we let  p\a'

denote the prime ideal (P,, X. + a,, • • • , X    + a   )  of A[X]  and we set
r fe'      1 1' '      m m

QÍ.O-) _ p(o-) p! g_  jn particular, for k = 1  we get the chain

(0) CPjM C(Pr Xj+ojíC, Ç(Pr ^{ + av ■■■, Xm_l + am_l) CP[a)

of m + 2 distinct prime ideals of  B[Y]. It follows from (A) that Qj     = Py'

nB 4 (0), that is, rank Ç)[a) > 1.

Obviously our proof is complete if we can show the existence of an ele-

ment  a in  X  A such that rankO,     > k foe each  k, 1 < k < n. Therefore,
m ^k    — »__ >

suppose that no such   a  exists.  Then we may choose a smallest integer  t

for which there exists an element  cl    in   X  A   such that rank  O,       < t.  We
0 m ^ t

have already observed that  t >   1.  Set S = X  (P. - P.    ,)  and let ß £ S.
<arj+# (an> ' . •

It is clear that  P = P (where  cl   + ß  is defined in the usual way),

so we have

(a  ) (a   +ß) (a   + ß) (a  + ß) (a   + /3)

e, ° =ö, °    =pt °    ^B2pt_\    nB = e,_°   •

By assumption on  /, we have rank  Q.,        > t — 1, so it follows that

2 = Q,_ i        for each /3  in ö.  Now  P /P     ,   is infinite, so for any  a

in A, the set \a + p\p £ P   - P., I contains infinitely many elements which

are distinct modulo  P     ,.  Therefore,
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If  aQ = (a     ■ • • , a   ),   then we have a chain

er°)[Y] £ pz-i[x] c(pz-1- xi+ ai} c • • •

c(P(.1.x1 + «1,-,xll.1 + v1)cC1 cpt

(an)
of at least  m + 2 prime ideals of  B[Y]  all of which contract to  O in  B.

This contradicts (A), so our proof is complete.
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