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SHORTER NOTES

The purpose of this department is to publish very short papers of an

unusually elegant and polished character, for which there is no other outlet.

THE ZARISKI-LIPMAN CONJECTURE

FOR HOMOGENEOUS COMPLETE INTERSECTIONS

MELVIN HÖCHSTER1

ABSTRACT.  A new short proof is given that if R   is a homogeneous

complete intersection over a field  K oí chat 0 and  Derj,(/?, R) is R-free,

then  R   is a polynomial ring.

Let  K be a field with  char K = 0.   The Zariski-Lipman conjecture as-

serts that if R  is the local ring at a closed point  y of a K-variety and

Det„(R, R) is R-free, then y  is a simple point, that is, R  is regular.   This

is clearly an affine question.   The homogeneous case arises when  /  is a

homogeneous prime in S = K[x   , ...  , x  ] and R  is the local ring of S/I at

y = (0, . . .  ,0).  Then localization does not affect the issues and if we sim-

ply let R =S/l instead, the conjecture is that if Der„(ß, R^ is ß-free, then

R  is a polynomial ring over   K,  i.e.  / is generated by   1-forms.  In [3] it is

shown in the general case that if Der„(ß, R) is free then R  is integrally

closed.  In [4] S. Moen showed that if  R  is a homogeneous complete inter-

section, i.e.  / is generated by an 5-sequence of forms /j, ...,/,  the con-

jecture holds.  A different, shorter proof of Moen's result follows.

Assume that  / = (/.,...,/ )S as above is prime in S = K[x  , . . . , x  ],

that the /. are forms, that d = dim R = n - r,  and that Det„(R, R) is free.

We must show that /., ... , /   are 1-forms. We may assume, as usual, that

d. = deg /. > 2  for each /,  and we shall obtain a contradiction.  We identify

Der^ (R, R) with the .R-relations on the rows of the matrix  / = (/"),  where

/..= df./dx. and  ~   denotes reduction mod /.   Thus,  /  is an 72  by r matrix.

Since  K is infinite, by a suitable K-linear change of coordinates we may ar-

range that
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(*) fv ...,fT,xr+l,...,Xn

is a homogeneous system of parameters for S.

Let  U be a matrix whose rows are a free basis for the ß-relations on

the rows of  /.   Since  rank / = height / = r, U will be d by  tz.   Moreover, we

may assume that the first row of  U is  (x~ . . . x~)  (this is a relation by (#)

below, and is part of a minimal basis by a degree argument).  Then  0 —► R

—> R" —' Rr is  exact.   If   A   is  a  matrix  let   DÍA) denote the determinant

of the  z by r submatrix in the upper left-hand corner.   It follows from [1, Theo-

rem 3.l] that Dij) is a multiple of the rightmost d by d minor of  U,  and

hence lies in the ideal  (x-,, , . . . , x~)R,  so that
r+l tz       '

DifA£ixr + v...,xn,fv...,f)S.

Let * denote reduction  mod (x   .,,..., x )S.   Then
r+l n

(**) D = Dif*.) £ (/*, . . . , f*)S*,

where  S    =ï K[x., ... , x ].  Since

(#) d.f.= ¿ f..x.,       Kj<r,
Z=l

we have  /. = (l/zi.)p. where   p.  =   <£'   , f ,.x .,   1 < / < r.   The   e. (or /• ) are
'j ii i '=1   ;z   z       —    — ii

a system of parameters for S    ^by (*) above) and by [2, first paragraph, proof

of Theorem 1, pp. 227—228] the image of D  generates the socle of the 0-di-

mensional Gorenstein local ring S /(g,, . . . , g )S , which contradicts (**)

above.     Q.E.D.
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