A CHARACTERIZATION OF STEINITZ GROUP RINGS

PAUL I. ALLEN AND JOSEPH NEGGERS

ABSTRACT. A ring R with an identity is a (right) Steinitz ring provided any linearly independent subset of a free (right) R-module can be extended to a basis for the module by adjoining elements from any given basis. In this paper, we characterize those group rings which are Steinitz rings by the following:

Theorem. The group ring R[G] is a Steinitz ring if and only if R is a Steinitz ring and either (1) char $R = p^i$ and G is a finite p-group or (2) char R = 0 and G = 1.

Introduction. A ring R with an identity will be called a (right) Steinitz ring provided any linearly independent subset of a free (right) R-module can be extended to a basis for the module by adjoining elements from any given basis. A subset S of the ring R will be called T-nilpotent if for each sequence $\{x_i\}_{i=1}^{\infty}$ in S, there exists an integer n such that $x_n x_{n-1} \cdots x_1 = 0$. Chwe and Neggers [1], [2] proved that R is a Steinitz ring if and only if R is a local ring (i.e., the Jacobson radical is the set of nonunits) with a T-nilpotent Jacobson radical. In this paper we characterize those group rings which are Steinitz rings.

A characterization of Steinitz group rings. Since Steinitz rings have characteristic 0 or p^i where p is a prime, our characterization consists of two cases and is stated as follows:

Theorem. The group ring R[G] is a Steinitz ring if and only if R is a Steinitz ring and either (1) char $R = p^i$ and G is a finite p-group or (2) char R = 0 and G = 1.

Proof. Suppose that R[G] is a Steinitz group ring. Since the map ν defined by $(\Sigma r_g g)\nu = \Sigma r_g$ is a homomorphism from R[G] onto R, it follows that R is a Steinitz ring. Since $(1-g)\nu = 0$, it is clear that 1-g is a non-unit for every $g \in G$. Consequently, $\{1-g \mid g \in G\} \subseteq J(R[G])$ where J(R[G]) denotes the radical of R[G]. When $\alpha = \Sigma r_g g$ is an element of R[G], the support of α will mean $\{g \in G \mid r_g \neq 0 \text{ in the representation } \alpha = \Sigma r_g g\}$ and r_1 will

Received by the editors March 28, 1974.

AMS (MOS) subject classifications (1970). Primary 16A26.

Key words and phrases. Group ring, Steinitz ring, T-nilpotent Jacobson radical.

be called the trace of α . When $g_1, g_2, \cdots, g_{j-1}$ are elements of G, let S_j denote the support of $(1-g_{j-1})(1-g_{j-2})\cdots(1-g_1)$. Suppose $g_1, g_2, \cdots, g_{n-1}$ have been chosen from G such that the trace of $(1-g_{n-1})(1-g_{n-2})\cdots(1-g_1)$ is 1. If $G_n=G-(S_n\cup S_n^{-1})\neq\emptyset$, then for any $g_n\in G_n$, it follows that $(1-g_n)(1-g_{n-1})\cdots(1-g_1)$ has trace 1, hence the product is nonzero. Since J(R[G]) is T-nilpotent, $G_n=\emptyset$ for some n and it follows that G is a finite group.

The radical of a Steinitz ring contains all of the nonunits, thus for each element g, either g or 1-g is a unit. It follows that the only idempotents in a Steinitz ring are 0 and 1. On the other hand, if g is an element of order n in the group G and if n is a unit in R[G], then $n^{-1}(1+g+\cdots+g^{n-1})$ is idempotent, hence $n^{-1}(1+g+\cdots+g^{n-1})$ must be 0 or 1. When char R=0, n is always a unit and thus the finite group G must be trivial. When char $R=p^i$, it must follow for each $g \in G$ that n=1 or p|n. In this case, G is a p-group.

If R is a Steinitz ring and condition 2 holds, it is obvious that R[G] is a Steinitz ring. When R is a Steinitz ring and condition 1 holds, we will show R[G] is a Steinitz ring with the aid of the following:

Lemma. Let R be a ring of characteristic p^i and let $1 = Z_0 \subset Z_1 \subset \cdots \subset Z_m = G$ be the ascending central series of the finite p-group G. For each $r = 0, 1, \cdots, m$ there exists an integer n_r such that any sequence in $\{1 - g | g \in G\}$ with at least n_r terms of the form 1 - z with $z \in Z_r$ has product zero in R[G].

Proof. For any product s of factors $1-x_i$, $x_i \in G$, we define $\gamma_t(s)$ to be the number of factors where $x_i \in Z_t$. When $\gamma_0(s) \ge 1$, it is clear that s=0. We may take $n_0=1$. Suppose n_r is a number such that $\gamma_r(s) \ge n_r$ implies s=0. Let $n_{r+1}=n_r+n_r|Z_{r+1}|ip^i|G|$. We will show $\gamma_{r+1}(s) \ge n_{r+1}$ implies s=0. The Lemma will follow by induction because of the nilpotence of G.

We shall use a second induction step. Namely, it will be shown that if $0 \le k \le n_r$ and s is a product with $\gamma_r(s) \ge k$ and $\gamma_{r+1}(s) \ge n_{r+1} - k$, then s is a sum of products s_i for which $\gamma_r(s_i) \ge k+1$ and $\gamma_{r+1}(s_i) \ge n_{r+1} - (k+1)$. Repeating this step at most n_r times will show that if $\gamma_{r+1}(s) \ge n_{r+1}$, then s is a sum of products s_i for which $\gamma_r(s_i) \ge n_r$, and consequently s = 0.

Suppose that $\gamma_r(s) \ge k$ and $\gamma_{r+1}(s) \ge n_{r+1} - k$, where $0 \le k \le n_r$. It follows from a pigeonhole argument that s contains at least $n_r i p^i |G|$ equal factors 1-x for some $x \in Z_{r+1}$, since

$$\frac{n_{r+1} - k}{|Z_{r+1}|} \ge \frac{n_{r+1} - n_r}{|Z_{r+1}|} = n_r i p^i |G|.$$

There is nothing to prove if s=0, so we may suppose that $\gamma_r(s) < n_r$. Therefore, there must be a product π of consecutive factors in s which contains $n=ip^i|G|$ of the equal factors 1-x and does not contain any factor 1-y for $y\in Z_r$. Restricting our attention to this subproduct π , we reorder the factors of π to collect the equal factors 1-x, using the relation

$$(1-u)(1-x) = (1-x)(1-u) + ux(1-x^{-1}u^{-1}xu).$$

Since $(1-x)^n=0$, we know s is zero plus a sum of products s_i where each s_i is obtained by replacing a product (1-u)(1-x) in π by $ux(1-x^{-1}u^{-1}xu)$. Because of our choice of π , we know $u \notin Z_\tau$ and $x \notin Z_\tau$. Since $x \in Z_{\tau+1}$, it follows that $x^{-1}u^{-1}xu \in Z_\tau$ and therefore $\gamma_\tau(s_i)=\gamma_\tau(s)+1\geq k+1$. Since we have removed two factors from s and introduced the new element $1-x^{-1}u^{-1}xu$, we have $\gamma_{\tau+1}(s_i)\geq \gamma_{\tau+1}(s)-1\geq n_{\tau+1}-(k+1)$. The product s_i contains the factor ux, but this is of no consequence since it can be moved to the far right of s_i by using the relation $g(1-y)=(1-gyg^{-1})g$. This does not change the numbers γ_t since Z_t is normal in G, and the proof of the Lemma is complete.

We are now ready to proceed with the proof of the Theorem. Suppose R is a Steinitz ring of characteristic p^i and G is a finite p-group. When $S = \{1 - g | g \in G\}$, the Lemma implies there exists a positive integer $k = n_m$ such that $S^k = 0$. Let

$$N = \sum_{g \in G} R(1 - g).$$

Since x(1-g)=(1-xg)-(1-x), it is an easy matter to show N is an ideal in the ring R[G]. Let $\{x_1,\dots,x_k\}$ be any set of k elements of N where $x_i=\sum_{g\in G}r_{ig}(1-g)$. Since elements of R commute with elements of S, x_kx_{k-1} $\cdots x_1$ is clearly a sum of terms of the form

$$r(1-g_1)(1-g_2)\cdots(1-g_k)$$

and hence $N^k = 0$.

Let J(R) denote the radical of the Steinitz ring R. We know J(R) is a T-nilpotent subset of R consisting precisely of the nonunits of R. In general, the sum of a T-nilpotent subring and a T-nilpotent ideal is T-nilpotent, and in our setting we argue as follows: Since J(R) + N/N is a homomorphic image of J(R), we know J(R) + N/N is a T-nilpotent set. Let $\{x_i\}_{i=1}^{\infty}$ be a

sequence in J(R) + N. From the sequence $\{x_i + N\}$ in J(R) + N/N, we can choose integers $m_0 = 0$, m_1, \dots, m_k where $y_j = \prod_{i=m}^{m_j} 1 + 1 x_i \in N$ for j = 1, $2, \dots, k$. Clearly,

$$x_{n_k} x_{n_{k-1}} \cdots x_1 = y_k y_{k-1} \cdots y_1 = 0,$$

since $N^k = 0$ and it follows that J(R) + N is a T-nilpotent subset of R[G]. Using the fact that R[G] = R + N, it is an easy matter to show J(R) + N is an ideal in R[G]. Let $x \in R[G]$ where $x \notin J(R) + N$. Writing x = u(1 - z), where u is a unit in R and $z \in N$, one concludes immediately that

$$x^{-1} = (1 + z + \cdots + z^{k-1})u^{-1}$$

since $N^k = 0$. Therefore, if $x \notin J(R) + N$, then x is a unit in R[G] and it follows that J(R) + N is the ideal of nonunits in R[G]. It has now been shown that R[G] is a Steinitz ring of characteristic p^i when R is a Steinitz ring of characteristic p^i and G is a finite p-group.

Note. Since Steinitz rings are perfect rings, one can use a result of S. M. Woods [4] to prove that G is a finite group when R[G] is a Steinitz ring. The direct proof given above depends on R[G] being Steinitz rather than merely perfect. I. G. Connell (see [3, Theorem 9]) proved the fundamental (augmentation) ideal N is nilpotent when G is a finite p-group and p is nilpotent in R. Connell's proof of this result is by induction on the order of G and the proof only guarantees the existence of K such that K = 0. On the other hand, the proof of our Lemma gives a method by which a specific K can be calculated when needed. Consequently, we presented our Lemma as an alternative rather than quoting Connell's result. In addition, we pose the following:

Problem. When $I = Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_m = G$ is the ascending central series of the finite *p*-group G and R is a ring of characteristic p^i , find a better bound, or the best bound, for the smallest integer k such that $N^k = 0$.

REFERENCES

- 1. Byoung-song Chwe and Joseph Neggers, On the extension of linearly independent subsets of free modules to bases, Proc. Amer. Math. Soc. 24 (1970), 466-470. MR 40 #5652.
- 2. _____, Local rings with left vanishing radical, J. London Math. Soc. (2) 4 (1971), 374-378. MR 44 #6746.
- 3. I. G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685. MR 27 #3666.
- 4. S. M. Woods, On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 49-52. MR 42 #6130.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486