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ALMOST CONTINUITY
OF THE CESARO-VIETORIS FUNCTION

JACK B. BROWN

ABSTRACT. Consider the following function due to Cesiro: @(0) =0,
and if 0<x <1,
Hx) = lim sup(al tay+eeet an)/n,
where the a; are given by the unique nonterminating binary expansion of
x = (0. a,a,.-. ). Vietoris proved in 1921 that qS is connected (as a sub-
set of [0, 1] X R). The purpose of this note is to alter Vietoris’s argument
in order to prove that ¢b is actually almost continuous in the sense of Stal-

lings, thus answering a question raised recently by B. D. Smith.

B. D. Smith [7] recently proved that a real function f: [0, 1] =R is
continuous if and only if it satisfies the three conditions (i) [ is almost
continuous in the sense of Stallings [8] (for any open set N C [0, 1] x R
containing [, N contains a continuous function g: [0, 1] —R), (ii) f is
almost continuous in the sense of Husain 3] (for every x € [0, 1] and
open set V C R containing f(x), CI(f~ Lvy) is a neighborhood of x), and
(iii) f is not of Cesaro type (for every open U C [0, 1] and open V C R
there exists y € V such that U ¢ CI(f~ 1(y))). In investigating the possible
redundancy of (i), (ii), and (iii), Smith leaves open only the question of
whether (i) and (ii) imply (iii). He poses as a very likely counterexample
to this implication the function ¢ of Cesdro. It satisfies (ii) but not (iii).
Vietoris [9] showed that ¢ is connected, and Smith points out that Stallings
[8] raised the question of whether connected functions from [0, 1] into R
necessarily satisfy (i). If such were the case, then ¢ would necessarily
satisfy (i). However, this question of Stallings has been answered in the
negative. The first counterexample, due to Jones and Thomas [4] , happens
to satisfy (iii), but later examples [1], [2], [6], satisfy (ii) but not (iii), are
connected, but do not satisfy (i). This casts some doubt as to whether o)
might satisfy (i).
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It might be said here that it is possible to use standard transfinite tech-
niques to construct a function f which intersects every closed subset C of
[0, 1] x R which has a nondegenerate connected projection onto [0, 1]. Then,
[ would satisfy (ii) but not (iii), and it would follow from the theorem about

)y

“‘minimal blocking sets’’ of [S] that { would satisfy (i). However, it seems
desirable to just determine whether the simpler and oft-used function ¢ sat-

isfies (i).

Theorem. The Cesaro function ¢ is almost continuous in the sense of
Stallings.

Proof. Vietoris’s proof that ¢ has a connected graph [9, pp. 202-204]
will be referred to extensively. Suppose ¢ is not almost continuous in the
sense of Stallings, and let O be an open subset of [0, 1] x R containing ¢
but containing no continuous function g: [0, 1] —R. Let N be a neighbor-
hood of (0, 0) which lies in O, assume without loss of generality that
NNY =0NY(Y isthe y-axis), and define G = {(x, y)|(x, y) € N or else
0 < x and there exists a continuous function g: [0, x] =R lying in O such
that g(x) = y}. G is obviously connected. It is also open, for suppose (x, y)
€ G and g: [0, x] @R is a continuous function lying in O such that g(x) =
y. Consider a rectangle s with center (x, y), interior lying in O, and hav-
ing a vertical left edge that intersects g in a point (x’, y'). Clearly the
function g’ = g|[0, x'] can be extended continuously within O to any point
interior to .;, so that the interior of s lies in G. Let H denote the boundary
of G and J=[0,1] xR -(GUH). Let b =supix|(x, ¢(x)) € G}. Clearly
b > 0. Suppose (b, (b)) belongs to G and let g: [0, b] =R be a continuous
function lying in O such that g(b) = ¢(b). Then b <1, because by suppo-
sition there is no continuous g: [0, 1] —R lying in O. Then a spherical
neighborhood containing (b, ¢(b)) and lying in O will contain a point
(¢, ¢(c)) with b <c, and the function g can be continuously extended with-
in that neighborhood to (c, ¢(c)). Thus, (c, ¢(c)) is a point of G with ab-
scissa greater than b, and this is a contradiction. So (b, (b)) does not be-
long to G.

Now consider a spherical neighborhood N’ of (b, ¢(b)) lying in O and
having radius 7. Notice that every point in the left half of N’ belongs to

J, because otherwise the left half of N’ would necessarily contain a point

(x', y') of G and the continuous function g' associated with (x', y') could
be extended continuously within O to (b, ¢(b)). Now, let (a, ¢(a)) be a
point of G such that b — 7 < a < b. Now consider a neighborhood N" of
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(a, ¢(a)) of radius r' <min(b — @, @ — b + r) such that N” lies in G. Then,
the vertical strip W of all points in [0, 1] x R with abscissa in [a, @ + 7']
is such that every vertical line lying in W contains a point of G with a
positive ordinate and a point of | with a positive ordinate and therefore
also a point of H with a positive ordinate. This is the point to which Vietoris
arrives in his argument at the top of p. 204 of [9].

What follows is a paraphrasing of Vietoris’s argument, altered slightly
to serve the special purposes of this proof. Let Hy=HNW. LetW,, W,,...
be a sequence of open sets containing H, (W being the union of the
(1/2")-neighborhoods of points of H,). A sequence n(1), n(2),--- of posi-
tive integers and a dyadic decimal 0.a 1%, -+ will be defined simultaneous-
ly, with Mi denoting (aI Ayt + az.)/i as the process is carried out.
First pick a dyadic rational & = 0.a, ... a; between a and a + ' and
then any point ¢, = (£, n,) of GNW, with 1, > 0. Consider a square
shaped neighborhood Q of ¢, which has radius g < n/2 and lies interior
to GNW, NW. Now, proceed to define @ippr Aiggscee €LC, using consecu-
tive 0’s up to a stage a, so that (1) regardless of how O0a,--- Aiovelyons
is continued, it will differ from :fo by less than ¢, (2) Mk <gq and (3) 1/k
<4g. Then continue defining @, ,;, @, ,,,+++ etc., using consecutive 1’s
up to astage a4, so that the point b, = (£, M1y isin Q(where £ =
0.aa,... an(l)). This can be accomplished since IM,'+1 - Mi| <1/(i +1)
< g for each 7 > k. Now repeat the process, starting with any point c,=
(tfl, 7)1) of GN W, with n, > 0, and then defining 2p(1y+17 n(2)+20 """ €LCe,
first using consecutive 0’s and then using consecutive 1’s up to a stage
@,y sothat & =0.a.a,... @,y is between & and a + 7' and the point
b, =(,, M, (2y) is in W, N G. Continue this process. Define x,=0.aa,...
and y = ¢(xa) Since consecutive 0’s and then consecutive 1’s were used
in proceeding from Zp(ry O ity in the above process, it is true that for each
i between n(r) and n(r + 1),

Mi < max{Mn(r), M |3

n(r+1)
so that qS(xa) = lim sup M; = lim sup Mn(i)' Therefore, the point (x_, y )
is the limit of some subsequence of b, bz’ «++. Also, since bn ew ,

(x yw) € HO. Then since (x, yw) is a point of ¢, it has a neighborhood
N" which lies in O, and N” contains one of the points b.. Notice that

b, lies to the left of (%, y,)» so that the continuous function g which lies

in O, has domain an interval, and has left end (0, 0) and right end bz. can
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be continuously extended within O to (x_, y ). So (x_, ) belongs to G
rather than H. This is a contradiction.

Remark. It is to a certain degree disappointing that ¢ satisfies (i)
because it would be interesting to find a function which has a connected
graph, and does not satisfy (i), but which could be described in terms of
an equation (rather than by the topological techniques of [4] or the trans-
finite techniques of [1], [2], and [6])).
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