ALMOST CONTINUITY OF THE CESARO-VIETORIS FUNCTION

JACK B. BROWN

ABSTRACT. Consider the following function due to Cesàro: $\phi(0) = 0$, and if $0 < x \le 1$,

$$\phi(x) = \lim \sup (a_1 + a_2 + \cdots + a_n)/n,$$

where the a_i are given by the unique nonterminating binary expansion of $x = (0, a_1 a_2 \cdots)$. Vietoris proved in 1921 that ϕ is connected (as a subset of $[0, 1] \times R$). The purpose of this note is to alter Vietoris's argument in order to prove that ϕ is actually almost continuous in the sense of Stallings, thus answering a question raised recently by B. D. Smith.

B. D. Smith [7] recently proved that a real function $f: [0, 1] \rightarrow R$ is continuous if and only if it satisfies the three conditions (i) f is almost continuous in the sense of Stallings [8] (for any open set $N \subset [0, 1] \times R$ containing f, N contains a continuous function g: $[0, 1] \rightarrow R$), (ii) f is almost continuous in the sense of Husain [3] (for every $x \in [0, 1]$ and open set $V \subset R$ containing f(x), $Cl(f^{-1}(V))$ is a neighborhood of x), and (iii) f is not of Cesaro type (for every open $U \subset [0, 1]$ and open $V \subset R$ there exists $y \in V$ such that $U \not\subset Cl(f^{-1}(y))$. In investigating the possible redundancy of (i), (ii), and (iii), Smith leaves open only the question of whether (i) and (ii) imply (iii). He poses as a very likely counterexample to this implication the function ϕ of Cesaro. It satisfies (ii) but not (iii). Vietoris [9] showed that ϕ is connected, and Smith points out that Stallings [8] raised the question of whether connected functions from [0, 1] into R necessarily satisfy (i). If such were the case, then ϕ would necessarily satisfy (i). However, this question of Stallings has been answered in the negative. The first counterexample, due to Jones and Thomas [4], happens to satisfy (iii), but later examples [1], [2], [6], satisfy (ii) but not (iii), are connected, but do not satisfy (i). This casts some doubt as to whether ϕ might satisfy (i).

Received by the editors February 1, 1974.

AMS (MOS) subject classifications (1970). Primary 26A15, 54C10, 54C30. Key words and phrases. Almost continuous, connected graph, Cesaro-Vietoris function.

It might be said here that it is possible to use standard transfinite techniques to construct a function f which intersects every closed subset G of $[0, 1] \times R$ which has a nondegenerate connected projection onto [0, 1]. Then, f would satisfy (ii) but not (iii), and it would follow from the theorem about "minimal blocking sets" of [5] that f would satisfy (i). However, it seems desirable to just determine whether the simpler and oft-used function ϕ satisfies (i).

Theorem. The Cesàro function ϕ is almost continuous in the sense of Stallings.

Proof. Vietoris's proof that ϕ has a connected graph [9, pp. 202-204] will be referred to extensively. Suppose ϕ is not almost continuous in the sense of Stallings, and let O be an open subset of $[0, 1] \times R$ containing ϕ but containing no continuous function $g: [0, 1] \rightarrow R$. Let N be a neighborhood of (0, 0) which lies in 0, assume without loss of generality that $N \cap Y = O \cap Y$ (Y is the y-axis), and define $G = \{(x, y) | (x, y) \in N \text{ or else } \}$ $0 \le x$ and there exists a continuous function g: $[0, x] \rightarrow R$ lying in O such that g(x) = y. G is obviously connected. It is also open, for suppose (x, y) $\in G$ and $g: [0, x] \rightarrow R$ is a continuous function lying in O such that g(x) =y. Consider a rectangle s with center (x, y), interior lying in 0, and having a vertical left edge that intersects g in a point (x', y'). Clearly the function g' = g[0, x'] can be extended continuously within O to any point interior to s, so that the interior of s lies in G. Let H denote the boundary of G and $J = [0, 1] \times R - (G \cup H)$. Let $b = \sup\{x | (x, \phi(x)) \in G\}$. Clearly b>0. Suppose $(b, \phi(b))$ belongs to G and let g: $[0, b] \rightarrow R$ be a continuous function lying in O such that $g(b) = \phi(b)$. Then b < 1, because by supposition there is no continuous $g: [0, 1] \rightarrow R$ lying in O. Then a spherical neighborhood containing $(b, \phi(b))$ and lying in O will contain a point $(c, \phi(c))$ with b < c, and the function g can be continuously extended within that neighborhood to $(c, \phi(c))$. Thus, $(c, \phi(c))$ is a point of G with abscissa greater than b, and this is a contradiction. So $(b, \phi(b))$ does not belong to G.

Now consider a spherical neighborhood N' of $(b, \phi(b))$ lying in O and having radius τ . Notice that every point in the *left* half of N' belongs to J, because otherwise the left half of N' would necessarily contain a point (x', y') of G and the continuous function g' associated with (x', y') could be extended continuously within O to $(b, \phi(b))$. Now, let $(a, \phi(a))$ be a point of G such that b-r < a < b. Now consider a neighborhood N'' of

 $(a, \phi(a))$ of radius $r' < \min(b-a, a-b+r)$ such that N'' lies in G. Then, the vertical strip W of all points in $[0, 1] \times R$ with abscissa in [a, a+r'] is such that every vertical line lying in W contains a point of G with a positive ordinate and a point of G with a positive ordinate and therefore also a point of G with a positive ordinate. This is the point to which Vietoris arrives in his argument at the top of p. 204 of G.

What follows is a paraphrasing of Vietoris's argument, altered slightly to serve the special purposes of this proof. Let $H_0 = H \cap W$. Let W_1, W_2, \dots be a sequence of open sets containing H_0 (W_n being the union of the $(1/2^n)$ -neighborhoods of points of H_0). A sequence n(1), n(2), ... of positive integers and a dyadic decimal $0.a_1a_2\cdots$ will be defined simultaneously, with M_i denoting $(a_1 + a_2 + \cdots + a_i)/i$ as the process is carried out. First pick a dyadic rational $\xi_0 = 0.a_1 \cdots a_i$ between a and a + r' and then any point $c_1 = (\xi_0, \eta_0)$ of $G \cap W_1$ with $\eta_0 > 0$. Consider a square shaped neighborhood Q of c_1 which has radius $q < \eta/2$ and lies interior to $G \cap W_1 \cap W$. Now, proceed to define a_{i+1}, a_{i+2}, \cdots etc., using consecutive 0's up to a stage a_k so that (1) regardless of how $0.a_1 \cdots a_i \cdots a_k \cdots$ is continued, it will differ from ξ_0 by less than q, (2) $M_k < q$ and (3) 1/k< q. Then continue defining a_{k+1} , a_{k+2} , \cdots etc., using consecutive 1's up to a stage $a_{n(1)}$ so that the point $b_1 = (\xi_1, M_{n(1)})$ is in Q (where $\xi_1 =$ $0.a_1 a_2 \cdots a_{n(1)}$). This can be accomplished since $|M_{i+1} - M_i| < 1/(i+1)$ $\leq q$ for each $i \geq k$. Now repeat the process, starting with any point $c_{j} =$ (ξ_1, η_1) of $G \cap W_2$ with $\eta_1 > 0$, and then defining $a_{n(1)+1}, a_{n(2)+2}, \cdots$ etc., first using consecutive 0's and then using consecutive 1's up to a stage $a_{n(2)}$ so that $\xi_2 = 0.a_1 a_2 \cdots a_{n(2)}$ is between ξ_1 and a + r' and the point $b_2 = (\xi_2, M_{n(2)})$ is in $W_2 \cap G$. Continue this process. Define $x_{\omega} = 0.a_1 a_2 \cdots$ and $y_{\omega} = \phi(x_{\omega})$. Since consecutive 0's and then consecutive 1's were used in proceeding from $a_{n(r)}$ to $a_{n(r+1)}$ in the above process, it is true that for each i between n(r) and n(r+1),

$$M_{i} \leq \max\{M_{n(r)}, M_{n(r+1)}\},$$

so that $\phi(x_{\omega}) = \limsup M_i = \limsup M_{n(i)}$. Therefore, the point (x_{ω}, y_{ω}) is the limit of some subsequence of b_1, b_2, \cdots . Also, since $b_n \in W_n$, $(x_{\omega}, y_{\omega}) \in H_0$. Then since (x_{ω}, y_{ω}) is a point of ϕ , it has a neighborhood N''' which lies in O, and N''' contains one of the points b_i . Notice that b_i lies to the left of (x_{ω}, y_{ω}) , so that the continuous function g which lies in O, has domain an interval, and has left end (0, 0) and right end b_i can

be continuously extended within O to (x_{ω}, y_{ω}) . So (x_{ω}, y_{ω}) belongs to G rather than H. This is a contradiction.

Remark. It is to a certain degree disappointing that ϕ satisfies (i) because it would be interesting to find a function which has a connected graph, and does not satisfy (i), but which could be described in terms of an equation (rather than by the topological techniques of [4] or the transfinite techniques of [1], [2], and [6]).

REFERENCES

- 1. J. B. Brown, Connectivity, semi-continuity, and the Darboux property, Duke Math. J. 36 (1969), 559-562. MR 39 #7568.
- 2. J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58 (1966), 183-192. MR 33 #6600.
- 3. T. Husain, Almost continuous mappings, Prace Mat. 10 (1966), 1-7. MR 36 #3322.
- 4. F. B. Jones and E. S. Thomas, Jr., Connected G_{\S} -graphs, Duke Math. J. 33 (1966), 341-345. MR 33 #702.
- 5. K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181-185. MR 45 #2106.
- 6. J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57 (1965), 173-179. MR 33 #3270.
- 7. B. D. Smith, An alternate characterization of continuity, Proc. Amer. Math. Soc. 39 (1973), 318-320. MR 47 #4202.
- 8. J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263. MR 22 # 8485.
 - 9. L. Vietoris, Stetige Mengen, Monatsh. Math. Phys. 31 (1921), 173-204.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36830