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ALMOST CONTINUITY

OF THE CESÀRO-VIETORIS FUNCTION

JACK B. BROWN

ABSTRACT.    Consider the following function due to Cesaro: </>(0) = 0,

and if  0 < x < 1,

4Áx) = lim sup (a, + a2 + • • • + a )/n,

where the  a.  are given by the unique nonterminating binary expansion of

x = (0. a,a   ■ ■ ■).  Vietoris proved in 1921 that  </> is connected (as a sub-

set of  [O, l]x/?).  The purpose of this note is to alter Vietoris's argument

in order to prove that  </>  is actually almost continuous in the sense of Stal-

lings, thus answering a question raised recently by B. D. Smith.

B. D. Smith [7] recently proved that a real function /: [0, l] —>P  is

continuous if and only if it satisfies the three conditions (i) / is almost

continuous in the sense of Stallings [8] (for any open set  N C [0, l] x R

containing /, N  contains a continuous function g: [O, l] ~*R), (ii) / is

almost continuous in the sense of Husain [3] (for every x e [O,  l]  and

open set  V C R  containing f(x), Cl(f~  (V)) is a neighborhood of x), and

(iii) /is not of Cesàro type (for every open  U C [0, l]  and open   VCR

there exists y £ V  such that  U </ Cl(/     (y))).  In investigating the possible

redundancy of (i), (ii), and (iii), Smith leaves open only the question of

whether (i) and (ii) imply (iii).  He poses as a very likely counterexample

to this implication the function cp of Cesaro.  It satisfies (ii) but not (iii).

Vietoris [9] showed that </>  is connected, and Smith points out that Stallings

[8] raised the question of whether connected functions from [0, l]  into  R

necessarily satisfy (i).  If such were the case, then  <p would necessarily

satisfy (i).  However, this question of Stallings has been answered in the

negative.   The first Counterexample, due to Jones and Thomas [4], happens

to satisfy (iii), but later examples [l], [2], [6], satisfy (ii) but not (iii), are

connected, but do not satisfy (i).   This casts some doubt as to whether <p

might satisfy (i).
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It might be said here that it is possible to use standard transfinite tech-

niques to construct a function / which intersects every closed subset  C of

[0, l] x R  which has a nondegenerate connected projection onto  [0, l].  Then,

/ would satisfy  (ii) but not  (iii), and it would follow from the theorem about

"minimal blocking sets" of [5] that / would satisfy (i). However, it seems

desirable to just determine whether the simpler and oft-used function </>  sat-

isfies  (i).

Theorem.  The Cesàro function  </>  is almost continuous in the sense of

Stallings.

Proof.  Vietoris's proof that cp has a connected graph [9, pp. 202—204]

will be referred to extensively.  Suppose  cp is not almost continuous in the

sense of Stallings, and let  0  be an open subset of [O, l]xR  containing  cp

but containing no continuous function g: [O, 1]—>R.   Let  N be a neighbor-

hood of (0, 0) which lies in  0, assume without loss of generality that

N n y = O n Y (Y is the y-axis), and define  G = {(x, y)\(x, y) £ N or else

0 <x  and there exists a continuous function g:   [O, x] —>R  lying in O  such

that g(x) = y\.   G  is obviously connected.  It is also open, for suppose  (x, y)

£ G  and g: [0, x]—>R  is a continuous function lying in 0  such that g(x) =

y.   Consider a rectangle  s  with center (x, y), interior lying in 0, and hav-

ing a vertical left edge that intersects g  in a point  (x , y ). Clearly the

function g   = g|[0, x ]  can be extended continuously within 0 to any point

interior to s, so that the interior of s  lies in G.   Let H denote the boundary

of   G  and / = [O, l] x R - (G U H).   Let b = supix|(x, cp(x)) £ G\.   Clearly

b > 0. Suppose  (b, cf>(b)) belongs to  G and let g: [0, b] —>R  be a continuous

function lying in 0  such that g(b) = cp(b).   Then  b < 1, because by suppo-

sition there is no continuous g: [O, l]—>R   lying in  0.  Then a spherical

neighborhood containing  (b, cp(b)) and lying in 0 will contain a point

(c, cf>(c)) with b < c, and the function g  can be continuously extended with-

in that neighborhood to (c, cp(c)).   Thus, (c, </>(c)) is a point of G  with ab-

scissa greater than b, and this is a contradiction. So (b, cp(b)) does not be-

long to G.

Now consider a spherical neighborhood  N    of (b, cp(b))  lying in  O and

having radius r.   Notice that every point in the left halt of N    belongs to

/, because otherwise the left half of N    would necessarily contain a point

(x , y ) of G and the continuous function g    associated with  (x , y ) could

be extended continuously within  0  to  (b, cf>(b)).   Now, let   (a, cp(a)) be a

point of G such that  b - r < a < b.   Now consider a neighborhood Af" of
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(a, cp(a)) of radius r   < min (b -a, a — b + r) such that N    lies in G.   Then,

the vertical strip  W of all points in  [0, l] x R  with abscissa in  [a, a + r ~\

is such that every vertical line lying in  W contains a point of G with a

positive ordinate and a point of /  with a positive ordinate and therefore

also a point of H with a positive ordinate.   This is the point to which Vietoris

arrives in his argument at the top of p. 204 of [9].

What follows is a paraphrasing of Vietoris's argument, altered slightly

to serve the special purposes of this proof.  Let H   = H C\ W. Let W., W2,...

be a sequence of open sets containing  HQ (W     being the union of the

(l/2")-neighborhoods of points of H  ). A sequence  tz(1), 72(2), • • ■   of posi-

tive integers and a dyadic decimal  0.a.a2 • • •   will be defined simultaneous-

ly, with M. denoting (a. + a    + ■ • • + a.)/i as the process is carried out.

First pick a dyadic rational ç   = O.a. • • • a. between a and a + r   and

then any point c   = (çf     71 ) of  G O W.   with  r¡n > 0.  Consider a square

shaped neighborhood Q of c    which has radius q < rj/2 and lies interior

to G DW, nW.  Now, proceed to define a. + ,, a.+2,. • •   etc., using consecu-

tive 0's up to a stage a,   so that (1) regardless of how O.a   ... a .... a, .. •

is continued, it will differ from  çf_   by less than a, (2) M, < q and  (3)  l/k

< q. Then continue defining a,+1> a,+ ,..• etc., using consecutive l's

up to a stage a .. so that the point b. = (cf., M ...) is in g (where f. =

O.a^a   ...a    ,.).  This can be accomplished since   \M . + . - M .| < l/(i + 1)

< a  for each  i > k.  Now repeat the process, starting with any point  c    =

(£j, 77j) of G nlf    with r/j > 0, and then defining a  (i\+i« a m+2' ' * '  etc->

first using consecutive 0's and then using consecutive l's up to a stage

a   ...   so that  <f2 = 0.a.a2 • • •  a   ...   is between cf,   and a + r   and the point

^2 = ^2' ^77<2)) ^s ^n ^2 ^ ^'   Continue this process. Define xo}= O.a.a  ■•■

and y    = cp(x(J. Since consecutive  0's  and then consecutive l's were used

in proceeding from a   , .  to (7   , +1)  in the above process, it is true that for each

i  between n(r) and n(r + 1),

M . < maxi/M , ., M  ,.,A,
2 — 72(r)'      n(r+1)  '

so that sàOO = lim sup M. = lim sup M   ...  Therefore, the point  (x   , y   )

is the limit of some subsequence of b,, b^, • • • . Also, since  b    £ W ,
1 Í       2 n n

ix of y t) e H n-   Then since (x ^ y ̂   is a point of cp, it has a neighborhood

N'"   which lies in  O, and N     contains one of the points  b..   Notice that

bi lies to the left of (x^ y^), so that the continuous function g which lies

in  0, has domain an interval, and has left end (0, 0) and right end  b . can
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be continuously extended within  0  to (x   , y  ). So  (x   , y   ) belongs to  G

rather than H.   This is a contradiction.

Remark.  It is to a certain degree disappointing that </>  satisfies  (i)

because it would be interesting to find a function which has a connected

graph, and does not satisfy  (i), but which could be described in terms of

an equation (rather than by the topological techniques of [4] or the trans-

finite techniques of [l], [2], and [6]).
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