CONVERGENCE OF AVERAGES OF POINT TRANSFORMATIONS

M. A. AKCOGLU ¹ AND A. DEL JUNCO

Let (X, \mathcal{F}, μ) be a finite measure space. An invertible transformation of X which is measure preserving in both directions is called an automorphism of X. Birkhoff's Ergodic Theorem states that if τ is an automorphism of X then the sequence

$$\frac{1}{n+1}\sum_{i=0}^{n}f(r^{i}x)$$

converges a.e. for each $f \in L_1 = L_1(X, \mathcal{F}, \mu)$. This raises the following question. What are the necessary conditions on the matrix (a_{ni}) so that the sequence $f_n(x) = \sum_i a_{ni} f(\tau^{-i}x)$ converges a.e. for each $f \in L_1$ and for each automorphism τ ? The answer is not known. Spectral considerations would suggest, however, the following conjecture. If (a_{ni}) is such that the sequence of functions $p_n(z) = \sum_i a_{ni} z^{-i}$ is uniformly bounded and pointwise convergent on the unit circle |z| = 1, then f_n converges a.e. In fact, recently an attempt has been made to prove this as a theorem [1]. In this note we would like to observe the following simple fact which shows that this conjecture is far from being correct.

If r is a real number, let [r] denote the greatest integer which is less than or equal to r. Define a matrix (a_n) , $n = 1, 2, \cdots$, as

$$a_{ni} = \begin{cases} \frac{1}{[\sqrt{n}] + 1} & \text{if } n \le i \le [\sqrt{n}] + n, \\ 0 & \text{otherwise.} \end{cases}$$

Then the a_{ni} certainly satisfy the hypotheses of the conjecture. However, we have the following result.

Proposition. If τ is an ergodic automorphism of a probability space (X, \mathcal{F}, μ) , then there is a set E such that there is a set B of positive measure on which $\sum_{i} a_{ni} \chi_{E}(\tau^{-i}x)$ fails to converge.

Received by the editors July 23, 1974.

AMS (MOS) subject classifications (1970). Primary 28A65, 47A35.

¹Research supported by NRC Grant A3974.

Proof. Let $k_m = 2^m$. By Rohlin's theorem (see e.g. [2, Theorem 8.1]) for each $m \ge 2$ there is a set $F_m \in \mathcal{F}$ such that $\tau^i F_m$, $0 \le i \le k_m^2 + k_m$, are mutually disjoint and

$$\mu \bigcup_{i=0}^{k_m^2 + k_m} \tau^i F_m > \frac{9}{10}.$$

Let

$$E_m = \bigcup_{i=0}^{k_m} \tau^i F_m, \qquad B_m = \bigcup_{i=2k_m}^{k_m^2 + k_m} \tau^i F_m.$$

Note that

$$\mu(E_m) < \frac{1}{k_m},$$

(2)
$$\mu(B_m) > \left(1 - \frac{2k_m}{k_m^2 + k_m}\right) \frac{9}{10} > \frac{1}{2}.$$

Let $E = \bigcup_{m > 2} E_m$. Then (1) implies

(3)
$$\mu(E) \le \sum_{m \ge 2} \frac{1}{k_m} < \frac{1}{2}.$$

If
$$x \in \tau^{n+k_m} F_n$$
, $k_m \le n \le k_m^2$, then

(4)
$$\sum_{i} a_{ni} \chi_{\tau^{-i} E_{n}}(x) = 1.$$

(4) implies that for each $x \in B_m$ there is an integer $n \ge k_m$ such that

(5)
$$\sum_{i} a_{ni} \chi_{E}(\tau^{-i}x) = 1.$$

Since $\mu(B_m) > \frac{1}{2}$, by Fatou's Lemma there is a set B such that $\mu(B) > \frac{1}{2}$ and each $x \in B$ belongs to infinitely many of the B_m . Thus if $x \in B$, (5) holds for infinitely many integers n. However since τ is ergodic, if $\sum_i a_{ni} \chi_E(\tau^{-i}x)$ converges a.e., the limit function is equal to $\mu(E)$ a.e. Thus by (3) the convergence must fail.

BIBLIOGRAPHY

- 1. J. M. Belley, Invertible measure preserving transformations and pointwise convergence, Proc. Amer. Math. Soc. 43 (1974), 159-162.
- 2. M. Smorodinsky, Ergodic theory, entropy, Lecture Notes in Math., vol. 214, Springer-Verlag, New York and Berlin, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA