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WEAKLY COMPACT GROUPS OF OPERATORS

T. A. GILLESPIE AND T. T. WEST

ABSTRACT.    It is shown that the weakly closed algebra generated by

a weakly compact group of operators on a Banach space is reflexive and

equals its second commutant.  Also, an example is given to show that the

generator of a monothetic weakly compact group of operators need not

have a logarithm in the algebra of all bounded linear operators on the un-

derlying space.

Let X  be a complex Banach space, B(X) the algebra of all bounded

linear operators on  X, and  I the identity operator on  X.   By a group in

B(X) we shall mean a multiplicative group with unit I.   The weak operator

topology on  B(X) is denoted by the letter w.   Given a nonempty subset &

of B(X), &'  and &' denote the first and second commutants of fe, and

A(ë) is the  222-closed subalgebra of B(X)  generated by ë  and  I.   The lat-

tice of all ©-invariant closed subspaces of  X is denoted by  Lat fe, and

Alg Lat g = ÍT £ B(X): T(L) C L  (L e Lat &)].

A subalgebra A  of B(X)  is reflexive if Alg Lat A = A.   It is clear that re-

flexive algebras are  222-closed and contain I.   Finally, C, R, Z  and T are

the complex numbers, the reals, the integers and the unit circle.

We present several results concerning 2f-compact groups in B(X).

Such groups come within the general framework discussed by de Leeuw in

[1], where the underlying space is called a  G-space.  The monothetic

(singly generated) case has been considered in [4], [5], where an operator

in B(X) generating a i^-compact group (with unit I) is called a  G-operator.

It was shown in [4] that, if ^¡  is a monothetic  nv-compact group, then A(§)

is reflexive and (-/' = A(C¿).  In fact the methods developed there and in [5]

can be extended to prove

Theorem 1.   Let §  be an abelian w-compact group in B(X) (with unit

I).  Then A(§)  is reflexive and §" = A(§).
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Problem A.  Does Theorem 1 remain valid if the hypothesis that §  be

abelian is omitted?

G-operators have occurred in the work of Ljubic [8], where a study is

made of the spectral properties of an operator S e B(X)  satisfying

||exp (i r S)\\ < M (r £ R) and a certain almost-periodic condition.  (The space

X is taken to be weakly sequentially complete.)  It is shown that each such

S has a total set of eigenvectors corresponding to real eigenvalues, from

which it is easily seen (via [4, Theorem 1.2]) that   exp (iS)  is a G-opera-

tor.

Problem ß.  Can every  G-operator be written as   exp (iS) fot some

bounded  S?

Solution A.  Theorem 1 does indeed extend to the nonabelian case and

we sketch the main ideas of the proof.

Let § be a i^-compact group in B(X).

Lemma 2 [2, Theorem 8.1].   X  is the closed linear span of finite dimen -

sional \yinvariant   subspaces.

An easy consequence of this is the following description of Lat y  (cf.

Corollary 1.4 of [4]).

Lemma 3.  Each subspace in  Lat \¡  is spanned by finite dimensional

y -irreducible subspaces.

Write  X(n) for the direct sum of n copies of X and  T(n) e B(X(n>) for

the 72th direct sum of T.   Putting §'"^ = [T^: T e §!, it is easy to see that

§("' is a »-compact group in B(X(n)) with unit I^n\

Lemma 4.  Let S e Alg Lat §. Then S(n) e Alg Lat §(n) for n = 1, 2, • • •.

This is the key result and we sketch its proof.  A straightforward ar-

gument reduces the proof to the case n = 2. It is then sufficient, by Lemma

3, to show that each finite dimensional §^  '-irreducible subspace  M of X^

is  5^   '-invariant.  Using irreducibility, this is easily done in the case when

M contains  (0, x) for some x 4 0. Suppose therefore that M  contains no

elements of this form.  Then there is a finite dimensional subspace  N of X

and a linear operator U: N — X such that M = \(x, Ux): x e N\.   The hypoth-

eses on M  imply that N and  UN belong to Lat § and that (UT - TU)(N) =

|0! (T e §).  Also, N is  §-irreducible and thus either

(i)  U(N) = N, or

(ii) U(N)nN = io!.
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In case (i), U commutes with the irreducible set of operators §|/V on

N. Hence U is a scalar, from which it follows that M e Lat .V '. In case

(ii), the subspace L - (I + U)N is )-¡- and hence S-invariant. Therefore,

given x e N, there exists y e N such that Sx - y = - SUx + Uy. The left-

hand side of this equation is in N and the right in U(N), since N and U(N)

ate 5-invariant. Therefore both sides are zero, giving SUx - USx (x e N),

and hence  M e Lat S^h

A standard argument (cf. [9, Lemma 1]) now gives

Theorem 5.  A(§)  is reflexive.

Given A = [a..] 6 m (C), the  n x n complex matrices, and x = (x   ,. . . ,

x ) e X^"\ let Ax denote the element y = (y     .. . , y  )  in  X(n) defined by

y . = 2"   ,<2. x..  Let  M  be a finite dimensional 6-invariant subspace of X
'r; = l27  7 " r

with basis  \u,,---,u   \. Given T e Q, let T22. = X"   ,<x..(T)a..1' '72 °" 2 ; =1    2jv ;

Lemma 6. TAe map a: T—> a(T) = [a..(T)] is an anti-representation of

§^în„(C).

Define the operator P in B(X(n)) by

Px=   f   a(T-1)T(")X22'7,

where dT denotes Haar measure  on ^.  P  is a projection, but this fact is

not needed here. What is needed is the following result, which is easily

verified using Lemma 6.

Lemma 7.  PT(n)x = Pa(T)x for T e§ and x £ X(n).

Defining u in X'"* by u m. («.,..., u ), we have T^u = a(T)u for

each T £ §.  Therefore, from the definition of P, Pu = u.  Since  u 4  0, it

follows that ker P is strictly smaller than X^nK Thus, if  X*  is the dual

space of X, there exists f = (/    . .. , / ) e X*(n) with f 4 0 such that f

annihilates ker P (making the obvious identification of the dual space of

X<"> with X*(n)).  Put

77

F= Y f. ®u..*—i ' 1 1

2 = 1

Then F 4 0. Using the fact that T(n)x - a(T)x belongs to ker P for every

leSj  and x £ X^"\ a routine calculation gives

Lemma 8. F e §'.

Lemma 9.  Let M  be ^-irreducible and let  S e §".   Then M e Lat 5.
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To see this observe that  F  and S commute.  Further  \0\ 4 F(X) C M,

and since  F £ §', F(X) is  ^-invariant.  By irreducibility  F(X) = M; but

then S(M) = SF(X) = FS(X) C M.

Using reflexivity, Lemmas 9 and 3 give )-¡" C Á((j). Since the reverse

inclusion always holds, we have thus proved

Theorem 10. §" = A(§).

Solution B. We give an example of a  G-operator on a weakly sequential-

ly   complete space which is not of the form   exp(iS) with  S  bounded.  This

example depends on some general facts about logarithms of point measures.

Let  G  be a  LCAG  and let  M(G) be the commutative Banach algebra

of bounded regular complex measures on G under convolution.  Given x e

G, we show that the point mass  8    has a logarithm in M(G)  if, and only

if, x is of finite order in  G.   The "if" proof follows from elementary spec-

tral theory.  For the converse, let MAG) be the Banach algebra of discrete

measures on  G.

Lemma 11.  If a discrete measure ß on G has a logarithm in M(G),

then fi has a logarithm in MAG).

This follows from the fact that if  ß = exp v for some  v £ M(G), then

ß = exp vd where  vd is the discrete part of v.

Lemma 12.  Let 8   = exp v in M(G).  Then x  is of finite order in G.

By Lemma 11 we may (and do) assume that  G  is discrete.  Then the

maximal ideal space of M(G) is the compact group G dual to G.  The proof

can be completed by the following simple argument due to Gavin Brown.

Taking Gelfand transforms in the equation 8   = exp v, we obtain

x(y) = 8x(\) = exp ¿(y)      (x e G),

where, without loss of generality, viX\) = 0 f°r Xi   tne unlt °^ G.  Since

x is a character on   G, it follows that

iXx<A) = i%x) + ̂ "A) + 2mN{x, <A)       (x> ft e G)

where  N: G x G—>Z is continuous. Let H be the connected component containing

Xl in G.  Then 2mN(-^, ifj) =-j/(y,) = 0 on H.  Hence

v\yn) = nv(X)       (y £ H, n £ Z).

The boundedness of the continuous function   v on the compact group H
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gives  ¿(y) = O (y e H). Hence  x(y) =1  (-y e H) and so x  is of finite or-

der in G [6, 24.20].

We can now give the counterexample for Problem B.  Let  R     be the

translation operator on L (T) defined by

(Rj)(t) = f(tco-1)        if e lHT), t a.e.),

where co £ T  and  arg co is an irrational multiple of 227.   R     is a  G-operator

on  L  (T) [4, Example 5.4] and  L  (T) is weakly sequentially complete

[3, IV. 8.6].

Theorem 13.  R     does not have a logarithm in B(L  (T)).

For suppose R    = exp S in B(L  (T)). Since the powers of co are dense

in T, it follows that S commutes with every translation R  (t e T). Hence S

is a multiplier on  L  (T) and there exists  p. £ M(T)  such that Sf = ¡i * f (f £

Ll(T)) [7, Theorem 0.1.1]. Therefore

8a*f~*J-b*PI* */      (/ei-HT))

and so 5   = exp p..  Lemma 12 gives the required contradiction.
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