COMPLETE DOMAINS WITH RESPECT TO THE CARATHÉODORY DISTANCE

DONG S. KIM

ABSTRACT. Concerning completeness with respect to the Carathéodory distance (c-completeness), the following theorems are shown. A bounded convex (in geometric sense) domain D in C^n (R^{2n}) is c-complete, so that it is boundedly holomorphic convex. To preserve c-completeness in complex spaces, it is sufficient to have a proper local biholomorphic mapping as follows: Let α be a proper spread map of a c-hyperbolic complex space (X, A) onto a c-hyperbolic complex space (X, A) onto a c-hyperbolic complex space (X, A); then X is c-complete if and only if X is c-complete. We also show the following D to be domains of bounded holomorphy: let $(X, A; \alpha)$ be a Riemann domain and D a domain in X with $\alpha(D)$ bounded in C^n . Let B(D) separate the points of D. Suppose there is a compact set K such that for any $x \in D$ there is an analytic automorphism $\sigma \in \text{Aut}(D)$ and a point $a \in K$ such that $\sigma(x) = a$. Then D is a domain of bounded holomorphy.

Let (X, A) be a complex space and D a domain (open and connected) in X. Let B = B(D) be the algebra of bounded holomorphic functions on D and

$$B_1 = \left\{ f \in B; \sup_{x \in D} |f(x)| = \|f\|_D = 1 \right\}.$$

We define the Carathéodory distance $c = c_D$ as follows: For x, $y \in D$,

$$c(x, y) = \sup_{g \in B_1} \rho(g(x), g(y)),$$

where

$$\rho(z_1, z_2) = \log \frac{|z_2 - z_1| + |1 - z_1 \overline{z}_2|}{\sqrt{(1 - z_1 \overline{z}_1)(1 - z_2 \overline{z}_2)}},$$

where z_1 , z_2 are in the open unit disc in C.

Presented to the Society, December 7, 1973; received by the editors October 11, 1973 and, in revised form, April 4, 1974.

AMS (MOS) subject classifications (1970). Primary 32H15, 32D05; Secondary 32E05.

Key words and phrases. c-complete, c-hyperbolic, domain of bounded holomorphy, boundedly holomorphic convex, envelope of bounded holomorphy, Stein manifold of bounded type, analytic automorphism, bounded homogeneous domain.

170

For $g \in B_1$ and $x' \in D$, set

$$f(x') = \frac{g(x') - g(x)}{g(x')\overline{g(x)} - 1};$$

then

$$c(x, y) = \sup_{f \in B_x} \left\{ \frac{1}{2} \log \frac{1 + |f(y)|}{1 - |f(y)|} \right\},\,$$

where $B_x = \{ f \in B_1; f(x) = 0 \}$.

This c is a pseudo-distance on D; c is a distance if and only if B(D) separates the points of D, in which case we say that D is c-hyperbolic. If every closed ball $\Delta(p, r) = \{x \in D; c(p, x) \le r\}, p \in D$ and r > 0, is compact, we call D a c-complete domain. Horstmann [3] has shown that a c-complete domain in \mathbb{C}^n is holomorphically convex. Kobayashi [6], [7] has generalized this as follows: a c-complete domain in a complex space is B-holomorphically convex. (See [7, Theorem 3.6, Chapter 4].)

We note the following facts about the Carathéodory distance c. c is trivial on \mathbb{C}^n or on a compact complex space. Every holomorphic map of a complex space to another is distance decreasing. A finite Cartesian product of c-complete hyperbolic complex spaces is c-complete hyperbolic. An intersection of c-complete hyperbolic complex subspaces of a complex space is c-complete hyperbolic. (See Kobayashi [6], [7].)

We will use the following relatively unknown terminology throughout this note. A domain D in a complex space (X,A) is said to be a domain of bounded holomorphy if there is a function $f \in B(D)$ which does not have bounded analytic continuation beyond the domain D. D is said to be boundedly holomorphic convex if the holomorphically convex hull \hat{K}_B relative to B(D) ($\hat{K}_B = \{x \in D; |f(x)| \le \|f\|_K$ for all $f \in B(D)\}$) is compact for every compact subset K of D. An envelope of bounded holomorphy is the largest domain into which all bounded holomorphic functions may be continued boundedly (see Kim [4, Definition 2 and Theorem 2]). Finally, a Stein manifold of bounded type is a complex manifold (X,A) such that (i) B(X) separates the points of X, (ii) X is boundedly holomorphic convex, and (iii) B(X) provides a globally defined local coordinate system to each point of X.

Proposition 1. Let (X_1, A_1) and (X_2, A_2) be c-hyperbolic complex spaces and ϕ a proper holomorphic map of X_1 onto X_2 . If X_2 is c-complete then so is X_1 .

Proof. Let c_{X_1} and c_{X_2} be the distances on X_1 and X_2 , respectively. Since $c_{X_2}(\phi(p), \phi(x)) \le c_{X_1}(p, x)$ for $p, x \in X_1$,

$$\{x \in X_1; \ c_{X_1}(p, x) \le r\} \subset \phi^{-1}(\{y \in X_2; \ c_{X_2}(\phi(p), y) \le r\}).$$

Since the latter set is compact, so is the former.

Theorem 2. Every bounded convex (in the geometric sense) domain in \mathbb{C}^n (\mathbb{R}^{2n}) is c-complete.

Proof. Such a domain D is the intersection of open sets biholomorphic to $S = \{(z_1, \dots, z_n) \in \mathbb{C}^n; \text{ Re } z_i > 0, i = 1, 2, \dots, n \}$. Since such S's are c-complete, so is D.

Remark. We have a large class of domains D on which B(D) is dense in O(D). By the above theorem, every bounded convex domain D in \mathbb{C}^n is boundedly holomorphic convex so that it is a Stein manifold of bounded type, hence B(D) is dense in O(D).

Proposition 3. A Siegel domain of the second kind is c-complete hyperbolic.

Proof. A Siegel domain of the second kind can be written as the intersection of domains, each of which is biholomorphic to a product of balls. Since a product of balls is c-complete hyperbolic, so is the domain.

We note that, in a Riemann domain $(X, A; \alpha)$ with a bounded spread map α , if a domain D in X is boundedly holomorphic convex, then B(D) separates the points of D (see Kim [5]), so that such a domain is always c-hyperbolic.

To preserve c-completeness from one complex space to another, it suffices to have a local biholomorphic proper map.

Theorem 4. Let (X, A) and (\tilde{X}, \tilde{A}) be c-hyperbolic complex spaces. Let α be a proper spread map of X onto \tilde{X} . Then X is c-complete if and only if \tilde{X} is c-complete.

Proof. If X is c-complete so is X by Proposition 1. Assume that X is c-complete. Let $\Delta(\widetilde{p}, r) = \{\widetilde{x} \in X; c_{\widetilde{X}}(\widetilde{p}, \widetilde{x}) \leq r\}, \widetilde{p} \in X$. We show that $\Delta(\widetilde{p}, r)$ is compact. Note that since α is a proper spread map, $\alpha^{-1}(\widetilde{x})$ is, for any $\widetilde{x} \in X$, a finite point set. For $x \in X$, there is a neighborhood U_x such that $\alpha: U_x \to \alpha(U_x)$ is biholomorphic. Set $\alpha(U_x) = U_{\widetilde{X}}$. Then there exists $\epsilon_{\widetilde{X}} > 0$ such that $\Delta(\widetilde{x}, \epsilon_{\widetilde{X}}) = \{\widetilde{y} \in X; c_{\widetilde{X}}(\widetilde{x}, \widetilde{y}) < \epsilon_{\widetilde{X}}\} \subset U_{\widetilde{X}}$. Consider the family $\{\Delta(\widetilde{x}, \epsilon_{\widetilde{X}}); \widetilde{x} \in \Delta(\widetilde{p}, r)\}$. This family is an open covering of $\Delta(\widetilde{p}, r)$.

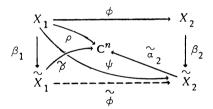
172 D. S. KIM

Now consider $\{\alpha^{-1}(\mathring{\Delta}(\widehat{x}, \epsilon_{\widehat{x}})); \widehat{x} \in \Delta(\widehat{p}, r)\}$. Recalling that α is an isometry of each $\alpha^{-1}(\mathring{\Delta}(\widehat{x}, \epsilon_{\widehat{x}}))$ to $\mathring{\Delta}(\widehat{x}, \epsilon_{\widehat{x}})$, and that the preimage of \widehat{x} is a finite set, we have that $\bigcup \alpha^{-1}(\mathring{\Delta}(\widehat{x}, \epsilon_{\widehat{x}}))$ is contained in $\Delta(p, a)$, for $\alpha(p) = \widehat{p}$ and some $a < \infty$. Since $\Delta(p, a)$ is compact, choosing a finite covering $\{\alpha^{-1}(\mathring{\Delta}(\widehat{x}_i, \epsilon_{\widehat{x}})); i = 1, 2, \cdots, n\}, \Delta(\widehat{p}, r)$ has a finite covering. Hence $\Delta(\widehat{p}, r)$ is compact.

The following discussion is limited to Riemann domains.

Proposition 5. Let $(X_1, A_1; \alpha_1)$ and $(X_2, A_2; \alpha_2)$ be Riemann domains, and $(\beta_1; \widetilde{X}_1, \widetilde{A}_1; \alpha_1, \widetilde{B}_1)$, $(\beta_2; \widetilde{X}_2, \widetilde{A}_2; \widetilde{\alpha}_2, \widetilde{B}_2)$ the envelopes of bounded holomorphy of X_1 and X_2 , respectively. Let $\phi: X_1 \to X_2$ be a spread map of X_1 onto X_2 . Then there exists a holomorphic map $\widetilde{\phi}: \widetilde{X}_1 \to \widetilde{X}_2$ such that $\widetilde{\phi} \circ \beta_1 = \beta_2 \circ \phi$.

Proof.



Let $\psi = \beta_2 \circ \phi \colon X_1 \longrightarrow \widetilde{X}_2$. Then ψ is holomorphic and a local biholomorphism. We will show that there is $\widetilde{\phi} \colon \widetilde{X}_1 \longrightarrow \widetilde{X}_2$ such that $\widetilde{\phi} \circ \beta_1 = \psi$. Let $\rho = \widetilde{\alpha}_2 \circ \psi$; then ρ is also a local biholomorphism. Let $\rho = (\rho_1, \dots, \rho_n)$, ρ_i holomorphic. Let J be the jacobian determinant $J = \det(\partial_{\alpha_1} \rho_i / \partial z_j)$. Then since ρ is a local biholomorphism, $J(x) \neq 0$ for all $x \in X_1$. Let $\widetilde{\rho}_j$ be the extension of ρ_j to \widetilde{X}_1 , and let $\widetilde{\rho} = (\widetilde{\rho}_1, \dots, \widetilde{\rho}_n)$. Let \widetilde{f} be the extension of f to \widetilde{X}_1 . Then $\widetilde{f} = \det(\partial_{\alpha_1} \widetilde{\rho}_i / \partial z_j)$ and $\widetilde{f}(\widetilde{x}) \neq 0$ for all $\widetilde{x} \in \widetilde{X}_1$. Hence $\widetilde{\rho} \colon \widetilde{X}_1 \longrightarrow \mathbb{C}^n$ is a local biholomorphism and $\widetilde{f}(\widetilde{x}) \not= 0$.

Let $F = \{f \circ \phi; f \in B(X_2)\}$, and identify this with $\{f \circ \psi; f \in B(X_2) = B_2\}$. It follows that $\{X_2; \alpha_2, B_2\}$ is the F-envelope of holomorphy of ρ : $X_1 \to \mathbb{C}^n$. Now, any bounded holomorphic function on X_1 can be extended to X_1 so that $f : X_1 \to \mathbb{C}^n$ is an F-extension of $f : X_1 \to \mathbb{C}^n$ relative to $f : X_1 \to X_1$. Since $f : X_2 \to \mathbb{C}^n$ is the $f : X_1 \to \mathbb{C}^n$ such that $f : X_2 \to \mathbb{C}^n$ and $f : X_1 \to \mathbb{C}^n$, there exists a holomorphic map $f : X_1 \to X_2$ such that $f : X_2 \to \mathbb{C}^n$ and $f : X_1 \to \mathbb{C}^n$, there exists a holomorphic map $f : X_1 \to X_2$ such that $f : X_2 \to \mathbb{C}^n$ and $f : X_1 \to \mathbb{C}^n$.

Corollary 6. Let $(X, A; \alpha)$ be a Riemann domain and $(\beta; \widetilde{X}, \widetilde{A}; \widetilde{\alpha}, \widetilde{B})$ its envelope of bounded holomorphy. Then for any analytic automorphism

 σ of X, there exists an analytic automorphism $\widetilde{\sigma}$ of \widetilde{X} such that $\widetilde{\sigma} \circ \beta = \beta \circ \sigma$.

Proposition 7 (**H. Cartan**). Let $(X, A; \alpha)$ be a Riemann domain and D a domain in X. Let $\{f_{\nu}\} \subset \operatorname{Aut}(D)$ be a sequence of automorphisms of D. Suppose that $\{f_{\nu}\}$ converges uniformly on compact subsets of D to a holomorphic map $f: D \to X$. Then the following conditions are equivalent.

- (i) $f \in Aut(D)$;
- (ii) $f(D) \not\subset boundary of D$;
- (iii) there exists $a \in D$ such that the jacobian of f at a is nontrivial.

Theorem 8. Let $(X, A; \alpha)$ be a separable Riemann domain. Let D be a domain in X with $\alpha(D)$ bounded in \mathbb{C}^n . Let B(D) separate the points of D. Suppose that there is a compact set K such that for any $x \in D$ there is an analytic automorphism $\sigma \in \operatorname{Aut}(D)$ and a point $a \in K$ with $\sigma(x) = a$. Then D is a domain of bounded holomorphy.

Proof. Let $(\beta; \widetilde{D}, \widetilde{A}; \widetilde{\alpha}, \widetilde{B})$ be the envelope of bounded holomorphy of D so that $\alpha = \alpha \circ \beta$. Then β is injective. To show the assertion, we have to show that β is surjective. Suppose this were false. Let $\{x_{ij}\}$ be a sequence of points of D which does not have a limit point in D and such that $\{\beta(x_n)\}\$ converges to a point q in the intersection of the boundary of $\beta(D)$ and \widetilde{D} . Let $a_{ij} \in K$ and $\sigma_{ij} \in Aut(D)$ be such that $\sigma_{ij}(x_{ij}) = a_{ij}$. Let P be an α -polydisc about $q \in \widetilde{\mathcal{D}}$, with P relatively compact in $\widetilde{\mathcal{D}}$ so that ${\widetilde \alpha}$ is biholomorphic on ${\bf P.}$ By Corollary 6, there is an automorphism ${\widetilde \sigma}_{\nu}$ of \widetilde{D} such that $\widetilde{\sigma}_{\nu}\circ\beta=eta\circ\sigma_{\nu}$. Further, since lpha(D) is bounded, lpha is a bounded spread map on D, that is, $\alpha = (f_1, \dots, f_n)$ with f_i bounded, so that $\widetilde{\alpha} = (\widetilde{f}_1, \dots, \widetilde{f}_n)$ is bounded on \widetilde{D} and $\widetilde{\alpha} \circ \widetilde{\sigma}_{\nu}$ is bounded uniformly with respect to ν . Let P_{ρ} be the polydisc of radius ρ about q in P. Then there is a constant $c_{\rho} > 0$ such that for $y \in \mathbf{P}_{\rho}$, $|\widetilde{\sigma}_{\nu}(x) - \widetilde{\sigma}_{\nu}(y)| \le c_{\rho}$ for all $x \in P_{\rho}$. Since β is injective, it follows that for sufficiently small ρ there is a compact subset L of D such that $\sigma_{\nu}(\beta^{-1}(\mathbf{P}_{\rho} \cap \beta(D))) =$ $\sigma_{\nu}(\beta^{-1}(\mathbf{P}_{o})) \subset L.$

By passing to subsequences, let σ and $\sigma'\colon D\to\mathbb{C}^n$ be the uniform limits of $\{\sigma_\nu\}$ and $\{\sigma_\nu^{-1}\}$ on compact subsets of D. Hence by Proposition 7, σ , $\sigma'\in \operatorname{Aut}(D)$ and $\sigma'\circ\sigma=\sigma\circ\sigma'=$ identity. However, this is absurd, since $\sigma_\nu^{-1}(a_\nu)=x_\nu$, so that if a is a limit point of $\{a_\nu\}$ in K, $\sigma'(a)\in D$, but $\{x_\nu\}$ has no limit point in D. The theorem is proved.

Corollary 9. If Γ is a discrete subgroup of Aut(D) such that D/Γ is

174 D. S. KIM

compact, then D is a domain of bounded holomorphy.

Corollary 10. If D is a bounded homogeneous domain in \mathbb{C}^n , then D is a domain of bounded holomorphy.

REFERENCES

- 1. C. Carathéodory, Über das Schwarzsche Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
 - 2. H. Cartan, Séminaire Cartan. Vol. 2, 1951-1954, Benjamin, New York.
- 3. H. Horstmann, Zur Theorie der Funktionen mehrer komplexen veränderlichen Carathéodorysche Metrik und Reguläritatshüllen, Math. Ann. 108 (1933), 208-217.
- 4. D. Kim, Boundedly holomorphic convex domains, Pacific J. Math. 46 (1973), 441-449.
- 5. _____, Boundedly holomorphic convex Riemann domain, Proc. Amer. Math. Soc. 41 (1973), 495-497.
- 6. S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 468-480. MR 38 #736.
- 7. ———, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., 2, Dekker, New York, 1970. MR 43 # 3503.
- 8. R. Narasimhan, Several complex variables, Chicago Lectures in Mathematics, 1971.
- 9. H. Reiffen, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. MR 33 #4325.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611