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COMPLETE DOMAINS WITH RESPECT

TO THE CARATHÉODORY DISTANCE

DONG S. KIM

ABSTRACT.  Concerning completeness with respect to the Caratheodory

distance  (c-completeness), the following theorems are shown.  A bounded

convex (in geometric sense) domain D  in C    (R     )   is  e-complete, so

that it is boundedly holomorphic convex.  To preserve  c-completeness in

complex spaces, it is sufficient to have a proper local biholomorphic map-

ping as follows: Let   a be a proper spread map of a  c-hyperbolic complex

space  (X, A)  onto a  c-hyperbolic complex space  (X, A); then X  is  c-com-

plete if and only if X  is   c-complete.   We also show the following

D  to be domains of bounded holomorphy: let  (X, A; a) be a Riemann do-

main and D  a domain in X with  a(D) bounded in C  .  Let  B(D) separate

the points of D.   Suppose there is a compact set K  such that for any x e D

there is an analytic automorphism  o- e Aut(D)  and a point  a e K   such that

o(x) — a.   Then D  is a domain of bounded holomorphy.

Let (X, A) be a complex space and D a domain (open and connected)

in X. Let B = B(D) be the algebra of bounded holomorphic functions on D

and

We define the Caratheodory distance c = c„  as follows:  For x, y £ D,

c(x, y) =   sup   p(g(x), giy)),

where

g£Bl

i      n   ,   K-Zil + l1-ziz2l
pUj, z2) = log

\/il - zxz j)(l - z2z2)

where z , z    ate in the open unit disc in  C.
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For g eß.  and x' £ D, set

fix') .   &]Z¿X).   ;
g(x')g(x) - 1

then

K*, y) í2 i      ! + 1 /
sup/- log-i.

l*Bx\ l~    f

[hi
fiy)

where  Bx = {f £ B x; f(x) = Q\.

This  c  is a pseudo-distance on D; c is a distance if and only if B(D)

separates the points of D, in which case we say that  D  is  c-hyperbolic.  If

every closed ball  A(p, r) = jx £ D; c(p, x) < r}, p e D  and r > 0, is compact,

we call  D  a  c-complete domain.  Horstmann [3] has shown that a  c-complete

domain in C"  is holomorphically convex.  Kobayashi [6], [7] has gen-

eralized this as follows: a  c-complete domain in a complex space is B-holo-

morphically convex.  (See [7, Theorem 3.6, Chapter 4].)

We note the following facts about the Caratheodory distance  c.   c is

trivial on C"  or on a compact complex space.  Every holomorphic map of a

complex space to another is distance decreasing.  A finite Cartesian product

of c-complete hyperbolic complex spaces is  c-complete hyperbolic. An

intersection of c-complete hyperbolic complex subspaces of a complex space

is  c-complete hyperbolic.  (See Kobayashi [6], [7].)

We will use the following relatively unknown terminology throughout

this note.  A domain D  in a complex space  (X, A)  is said to be a domain of

bounded holomorphy if there is a function / e B(D) which does not have

bounded analytic continuation beyond the domain  D.   D  is said to be bound-

edly holomorphic convex if the holomorphically convex hull  K„ relative to

B(D) (KB = {x eD; \f(x)\ < ¡/IIK  for all / e B(D)\) is compact for every com-

pact subset  K of D.   An envelope of bounded holomorphy is the largest do-

main into which all bounded holomorphic functions may be continued bound-

edly (see Kim [4, Definition 2 and Theorem 2]).  Finally, a Stein manifold of

bounded type is a complex manifold (X, A)  such that  (i)  B(X) separates

the points of X,  (ii)  X  is boundedly holomorphic convex, and  (iii) B(X)

provides a globally defined local coordinate system to each point of X.

Proposition 1.  Let (X., A.) and (X., A A) be  c-hyperbolic complex

spaces and </> a proper holomorphic map of X.   onto  X .   If X     is c-com-

plete then so is  X .
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Proof.  Let  cx    and cx    be the distances on  Xj  and X2, respectively.

Since  cv  (cp(p), á(x)) < c y  (p, x) tot p, x £ X.,
2 1

ix £ Xj; cx  (p, x) < r] C </>~ Hiy £ X2; cx  (</>(?), y) < r\).

Since the latter set is compact, so is the former.

Theorem 2.  Every bounded convex (in the geometric sense) domain in

C"  (R2")  is  c-complete.

Proof.  Such a domain D  is the intersection of open sets biholomorphic

to 5 = {(z., • • • , z ) £ C"; Re z . > 0, i = 1, 2, • • •, ni Since such S's are

c-complete, so is  D.

Remark. We have a large class of domains D  on which B(D) is dense

in U(D).  By the above theorem, every bounded convex domain  D  in  C"  is

boundedly holomorphic convex so that it is a Stein manifold of bounded type,

hence  B(D) is dense in 0(D).

Proposition 3.  A Siegel domain of the second kind is c-complete hyper-

bolic.

Proof.  A Siegel domain of the second kind can be written as the inter-

section of domains, each of which is biholomorphic to a product of balls.

Since a product of balls is  c-complete hyperbolic, so is the domain.

We note that, in a Riemann domain  (X, A; a) with a bounded spread map

a, if a domain D  in  X is boundedly holomorphic convex, then B(D)  sep-

arates the points of D  (see Kim [5]), so that such a domain is always  c-

hyperbolic.

To preserve  c-completeness from one complex space to another, it suf-

fices to have a local biholomorphic proper map.

Theorem 4.  Let (X, A) and (X, A) be  c-hyperbolic complex spaces.

Let  a be a proper spread map of X onto X.   Then X  is c-complete if and

only if X  is c-complete.

Proof.  If X  is  c-complete so is  X  by Proposition 1.  Assume that X

is  c-complete.  Let A(p, r) = {x   £ X;   c^(p', x) < r\, "p £ X. We show that

A(p, r) is compact. Note that since   a  is a proper spread map, a~ 1(x) is,

for any x £ X, a finite point set.  For x £ X, there is a neighborhood  U

such that a: U   —> a(U ) is biholomorphic. Set  a(U )= l/~.   Then there
X X    O r\> X A

exists  f~> 0  such that A(x) e-A) = (y £ X; c^fx, yf) < e-^l C IK. Consider

the family  jA(x, ej.); x€ A(p, r)\.   This family is an open covering of A(p, r).
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Now consider ja-   (Aöc', e^)); x" £ A(p°, r)\.   Recalling that  a  is an isometry

of each  a~ 1(\(x, r^)) to  A(x", <r~), and that the preimage of x" is a finite

set, we have that   \Ja~  (Aix', e~)) is contained in A(p, a), tot a(p) = p"

and some   a < oo. Since  A(p, a) is compact, choosing a finite covering
,    o

{a     (A(x"\, e~ )); i - 1, 2, • • •, «j, A(p^, r) has a finite covering.  Hence

A(p°, r)  is compact.

The following discussion is limited to Riemann domains.

Proposition 5.   Let (X., A.; a.)  and (X , A' a  ) be Riemann domains,

and (ß  ■ X., A.; dt., B .), (ß?; X  , A   ; a      B   ) the envelopes of bounded

holomorphy of X.  and X_, respectively.   Let </>: X, —' X    be a -spread map

o/ Xj   07270  X .   Then there exists a holomorphic map </>: X   —*X    5220/9

that $ oßj = /32 °<f>.

Proof.

Let  \p = ß    °<p: X.—» X_.  Then  ifj is holomorphic and a, local biholo-

morphism.  We will show that there is  cp: X . —yX     such that <p ° ß. = i/r.

Let p = dC    ° ip; then p is also a local biholomorphism.  Let p = (p.,. . .,

p ), p. holomorphic.  Let /  be the jacobian determinant / = det (d   p/dz.).

Then since p  is a local biholomorphism, J(x) 4 0 for all x eX.,   Let p .

be the extension of p. to X,, and let p° = (p ., • • • , p   ).  Let /   be the ex-

tension of /  to X'j.  Then f = det(d~ p . /dz.)  and J'(x) ^ 0 for all x" £

X  .  Hence  p°: X   —> C"  is a local biholomorphism and p ° ß. = p.

Let  F = i/ o 0; / e ß(X2)i, and identify this with  i/ ° ifj; f £ B(X A =

ß,!. It follows that ÍX ; cï 2, B\ is the  F-envelope of holomorphy of p:

•C".  Now, any bounded holomorphic function on X^   can be extendedX,

to X\  so that p: X   —> C" is an F-extension of p: X.—>C* relative to

>f f
(20  %

ßy Xj—»Xj.   Since   ot   : X2~>C"  is the  F-envelope of holomorphy of p:

X,—*C, there exists a holomorphic map tp: X.—' X-  such that

p   and  r^ o ¡3j = 1/7.

Corollary 6.  Lei  (X, A; a) he a Riemann domain and (ß; X, A; a, B)

its envelope of bounded holomorphy.   Then for any analytic automorphism



COMPLETE DOMAINS 173

o of X, there exists an analytic automorphism o   of X such that o ° ß =

ß °cr.

Proposition 7    (H. Cartan).  Ler  (X, A; a)  be a Riemann domain and

D a domain in X.   Let  {f  \ C Aut(D)  be a sequence of automorphisms of D.

Suppose that {f \ converges uniformly on compact subsets of D  to a holo-

morphic map j: D—> X.   Then the following conditions are equivalent.

(i) / eAut(D);

(ii)  f(D) t boundary of D;

(Hi) there exists a £ D  such that the jacobian of f at a  is nontrivial.

Theorem 8.   Let (X, A; a) be a separable Riemam domain.   Let D  be

a domain in X with  a(D) bounded in C".   Let B(D) separate the points of

D.   Suppose that there is a compact set  K  such that for any x £ D  there is

an analytic automorphism o £ Aut(D)  and a point a £ K with o(x) = a.

Then D  is a domain of bounded holomorphy.

Proof.  Let  (ß; D, A; oí, B) be the envelope of bounded holomorphy of

D  so that a = dC ° ß. Then ß is injective. To show the assertion, we

have to show that ß is surjective.  Suppose this were false.  Let   {xv\   be

a sequence of points of D  which does not have a limit point in  D  and such

that  i/8(x )|  converges to a point q  in the intersection of the boundary of

/3(D) and D.   Let ay £ K and o    £ Aut(D)  be such that <yvixv) = «„■   Let

P  be an Sï-polydisc about  q £ D, with  P  relatively compact in D  so that

"& is biholomorphic on  P.  By Corollary 6, there is an automorphism o     of

D  such that   o   ° ß = ß °o .  Further, since   a(D) is bounded, a  is a

bounded spread map on D, that is,  a = (/,,-• • ,/ ) with /. bounded, so

that  a = (/,..., /   ) is bounded on D   and 7Y ° q1    js bounded uniformly

with respect to  v.  Let  P    be the polydisc of radius  p about  q  in  P.  Then

there is a constant  c    > 0 such that for y £ P   ,   |,ctv(x) - cr   (y)| < c    tot

all x £ P  . Since ß is injective, it follows that for sufficiently small p

there is a compact subset  L  of D  such that o (ß~l(P    n /3(D))) =

ov(ß'l(Pp))CL.

By passing to subsequences, let o and a': D—»C"  be the uniform limits

of iffjj and  {o~   \ on compact subsets of D.  Hence by Proposition 7, o,

o   £ Aut(D) and o °o= o ° cr= identity.  However, this is absurd, since

°v   (av* = xv' so tnat if   «  is a limit point of ¡aj in  K, o'(a) £ D, but

{xv\ has no limit point in D.  The theorem is proved.

Corollary 9.  // Y is a discrete subgroup of Aut(D) such that D/T is
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compact, then D  is a domain of bounded holomorphy.

Corollary 10.  // D  is a bounded homogeneous domain in  C", then D

is a domain of bounded holomorphy.
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