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AN   «„-CATEGORICAL THEORY WHOSE LANGUAGE

IS COUNTABLY INFINITE

ROHIT PARIKH

ABSTRACT.   In the following, we describe an N.-categorical, com-

plete, decidable theory   T whose language is countably infinite.

T  is the theory of a structure 21;  but before defining 21, we define an-

other structure  21..

Definition.   Let X  be any set, A  a family of finite subsets of X.  Then

A  is monotone on  X  if  Y £ J"   and Z C Y  imply Z £ J. (In algebraic topol-

ogy, X, j   would be an abstract complex.)

Note that if A  is monotone on X  and X.   is a finite subset of X  then

J   restricts in a natural way to a monotone family J,   of finite subsets of

Xr We shall write ïj = J r Xj.

The structure 21. consists of a monotone family J on N which has the

following universality property: Let Y,, Y?, J ,, J2 be such that Y, C Y.,

Y2 is finite, J, is monotone on Y' and A . = J 2 \ Y,. Then given an iso-

morphism tf> of Y., J. into N, A, cp can be extended to an isomorphism of

Y 2, J y into W> J. In particular, since Y., j , may be chosen to be empty,

N, J   contains  a  copy of an arbitrarily chosen  Y2,J 2.

We show how to construct j .  In the above, we can assume without loss

of generality that ViÇiV, 5.=î t Y,   and Y, C Y 2 Ç N, but if.  of course

need not be j   f Y2.

Enumerate all triples (Y,, Y,, ?2) where Y, Ç Y, C N, Y,  is finite

and A.   is monotone on  Y?.  We shall take A 1   to be j. T  Y,.  We assume

that each triple occurs infinitely often in our enumeration.

At stage 0, we let XQ =0, §Q = 0.

Suppose at stage re  we have defined X  , a finite subset of /V, and Cj  ,

a monotone family on X   . We look at the reth triple  t   = ( Y, , Y,, J A. We

take X     ,=X    and §     .=§    unless Y.CX    and?,=§    TY.-If
72 + 1 72 °,77 + l ^T! 1—72 1 ^72 1

these two conditions do hold, then we let p = max(X  ) + 1.  Let  Y2 = Yj U

i(Y. - Y A + p\. J 2  immediately converts to an isomorphic monotone family
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Ï '   on   Y ' . We now take X     , = X   U Y ' , g     , = g   U ï ' .
i 2 77 + 1 72 2 '   ^72+1 "72 2

The construction ensures thatljx   = A/. We take 3" = U§  ; then ? has

the required properties. We shall say that X C N  is goofi? if X e 3".  21.   is

(n, y>.
The structure 21 has base set /V  and one re-ary relation P     for each

' n

re > 1.  R (a,, • • • , a ) iff the a. are all distinct and ia,, • • • , a  Sis
72 L Tl I L fl

good. T = Th(2I).

Theorem.   The theory  T described above is Hn-categorical, complete

and decidable; and R     ,   is not definable in T  from R ,,•••, R  .
72+1 ' ' 1 7 72

Proof.   Considera theory  T,   whose language is also L(T)  and whose

axioms are:

(1) Axioms saying that R  («j, • • • , a  )  implies that all the a. are

distinct.

(2) Axioms saying that R (a j, • • • , a ) and {b^, ■ • ■ , b   \C{a., • • • ,

a  I imply  R   (bl, • • • , b   ) provided only that the  b .  ate all distinct.

(3) For each X, Y, A j, J 2, where ?_  is monotone on  Y, XC Y, ?, =

A 2 t X, X = {x., ■ • • , x  \ and Y = \x., • • • , x  , y ,,'••, y A, the axiom

that says that for all Xj, • • • , x  , if Xj, • • • , x    "satisfy' ' ?,, then there

exist yj, ••• ,yp   such that *,,••', *n, yp •••, y&   satisfy 3^.

All these axioms can be expressed in L(T).

The following are immediate.

(a) T,   only has infinite models.

(b) Every countable model of T,   is isomorphic to 21.

Statement (b) can be proved by a "back and forth" argument, building

up the isomorphism on finite subsets of the two models in question.  The

argument is very like that used in showing that the theory of dense linear

order without first or last element is N.-categorical.

Thus T. = T and T is decidable, complete, NQ-categorical. To see

the last part of the theorem, we prove the following by induction on the complexity of

A and axioms of type (3) above:

Let A(x., • • • , x )  be a formula containing only predicate symbols

R . with  i < re.  Let  ctj, • • • , a   ; ßj, • • • , ß    be natural numbers (elements

of |2I|)  such that for    e < re, RJ(cl.  , • ■ ■ , a   )  iff Rg(ß. , ■ •■ , ß. ).  Then

U^A(av... ,ap) iff U^A(ß i,1--• , ßj.e

Suppose now that p = n + l,{a v ■ • • , o.p\ is good, i.e. Rn+l(°-1, ' ' ' , ap)

holds.  On the other hand {/Sj, • ■ • , ßA is not good but every proper subset

is.   Then  for a  formula   A    as above,   21  |= A(av  •  •  •  ,  a )   iff   21  |=
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A(ßv ■■■ , ßp). However, Rn + l(a-v " ' , ap) holds and R„+l(ßv ' ■ ' , ßp)

does not.  Thus  R     ,   is not definable from R,, • • • , R   .   O.E.D.
72 + 1 1 ' 72        ^

Suppose now that we have a finite set F  of notions definable in  T.

Then they will be definable from some finite set R., • •• , R   .  But then

R     .   is not definable from F. Hence the language of T is essentially infi-

nite.
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