AN κ_0 -CATEGORICAL THEORY WHOSE LANGUAGE IS COUNTABLY INFINITE

ROHIT PARIKH

ABSTRACT. In the following, we describe an \aleph_0 -categorical, complete, decidable theory T whose language is countably infinite.

T is the theory of a structure $\mathfrak{A};$ but before defining $\mathfrak{A},$ we define another structure \mathfrak{A}_0 .

Definition. Let X be any set, \mathcal{F} a family of finite subsets of X. Then \mathcal{F} is monotone on X if $Y \in \mathcal{F}$ and $Z \subseteq Y$ imply $Z \in \mathcal{F}$. (In algebraic topology, X, \mathcal{F} would be an abstract complex.)

Note that if $\mathcal F$ is monotone on X and X_1 is a finite subset of X then $\mathcal F$ restricts in a natural way to a monotone family $\mathcal F_1$ of finite subsets of X_1 . We shall write $\mathcal F_1 = \mathcal F \upharpoonright X_1$.

The structure \mathfrak{A}_0 consists of a monotone family \mathcal{F} on N which has the following universality property: Let $Y_1, Y_2, \mathcal{F}_1, \mathcal{F}_2$ be such that $Y_1 \subseteq Y_2, Y_2$ is finite, \mathcal{F}_2 is monotone on Y_2 and $\mathcal{F}_1 = \mathcal{F}_2 \upharpoonright Y_1$. Then given an isomorphism ϕ of Y_1, \mathcal{F}_1 into N, \mathcal{F}, ϕ can be extended to an isomorphism of Y_2, \mathcal{F}_2 into N, \mathcal{F} . In particular, since Y_1, \mathcal{F}_1 may be chosen to be empty, N, \mathcal{F} contains a copy of an arbitrarily chosen Y_2, \mathcal{F}_2 .

We show how to construct \mathcal{F} . In the above, we can assume without loss of generality that $Y_1 \subseteq N$, $\mathcal{F}_1 = \mathcal{F} \upharpoonright Y_1$ and $Y_1 \subseteq Y_2 \subseteq N$, but \mathcal{F}_2 of course need not be $\mathcal{F} \upharpoonright Y_2$.

Enumerate all triples $(Y_1, Y_2, \mathcal{F}_2)$ where $Y_1 \subseteq Y_2 \subseteq N$, Y_2 is finite and \mathcal{F}_2 is monotone on Y_2 . We shall take \mathcal{F}_1 to be $\mathcal{F}_2 \upharpoonright Y_1$. We assume that each triple occurs infinitely often in our enumeration.

At stage 0, we let $X_0 = \emptyset$, $\mathcal{G}_0 = \emptyset$.

Suppose at stage n we have defined X_n , a finite subset of N, and \mathcal{G}_n , a monotone family on X_n . We look at the nth triple $t_n = \langle Y_1, Y_2, \mathcal{F}_2 \rangle$. We take $X_{n+1} = X_n$ and $\mathcal{G}_{n+1} = \mathcal{G}_n$ unless $Y_1 \subseteq X_n$ and $\mathcal{F}_1 = \mathcal{G}_n \upharpoonright Y_1$. If these two conditions do hold, then we let $p = \max(X_n) + 1$. Let $Y_2' = Y_1 \cup \{(Y_2 - Y_1) + p\}$. \mathcal{F}_2 immediately converts to an isomorphic monotone family

Presented to the Society, September 24, 1973 under the title **K**₀-categorical theories; received by the editors February 8, 1974.

AMS (MOS) subject classifications (1970). Primary 02H13.

 \mathcal{F}_2' on Y_2' . We now take $X_{n+1} = X_n \cup Y_2'$, $\mathcal{G}_{n+1} = \mathcal{G}_n \cup \mathcal{F}_2'$.

The construction ensures that $\bigcup X_n = N$. We take $\mathcal{F} = \bigcup \mathcal{G}_n$; then \mathcal{F} has the required properties. We shall say that $X \subseteq N$ is good if $X \in \mathcal{F}$. \mathfrak{A}_0 is (N, \mathcal{F}) .

The structure $\mathfrak A$ has base set N and one n-ary relation R_n for each $n \ge 1$. $R_n(a_1, \dots, a_n)$ iff the a_i are all distinct and $\{a_1, \dots, a_n\}$ is good. $T = \text{Th}(\mathfrak A)$.

Theorem. The theory T described above is \aleph_0 -categorical, complete and decidable; and R_{n+1} is not definable in T from R_1, \dots, R_n .

Proof. Consider a theory T_1 whose language is also L(T) and whose

- (1) Axioms saying that $R_n(a_1, \dots, a_n)$ implies that all the a_i are distinct.
- (2) Axioms saying that $R_n(a_1, \dots, a_n)$ and $\{b_1, \dots, b_m\} \subseteq \{a_1, \dots, a_n\}$ imply $R_m(b_1, \dots, b_m)$ provided only that the b_i are all distinct.
- (3) For each X, Y, \mathcal{F}_1 , \mathcal{F}_2 , where \mathcal{F}_2 is monotone on Y, $X \subseteq Y$, $\mathcal{F}_1 = \mathcal{F}_2 \upharpoonright X$, $X = \{x_1, \dots, x_n\}$ and $Y = \{x_1, \dots, x_n, y_1, \dots, y_p\}$, the axiom that says that for all x_1, \dots, x_n , if x_1, \dots, x_n "satisfy" \mathcal{F}_1 , then there exist y_1, \dots, y_p such that $x_1, \dots, x_n, y_1, \dots, y_p$ satisfy \mathcal{F}_2 .

All these axioms can be expressed in L(T).

The following are immediate.

- (a) T_1 only has infinite models.
- (b) Every countable model of T_1 is isomorphic to \mathfrak{A} .

Statement (b) can be proved by a "back and forth" argument, building up the isomorphism on finite subsets of the two models in question. The argument is very like that used in showing that the theory of dense linear order without first or last element is \aleph_0 -categorical.

Thus $T_1 = T$ and T is decidable, complete, \aleph_0 -categorical. To see the last part of the theorem, we prove the following by induction on the complexity of A and axioms of type (3) above:

Let $A(x_1, \cdots, x_p)$ be a formula containing only predicate symbols R_i with $i \leq n$. Let $\alpha_1, \cdots, \alpha_p$; β_1, \cdots, β_p be natural numbers (elements of $|\mathfrak{A}|$) such that for $e \leq n$, $R_e(\alpha_{j_1}, \cdots, \alpha_{j_e})$ iff $R_e(\beta_{j_1}, \cdots, \beta_{j_e})$. Then $\mathfrak{A} \models A(\alpha_1, \cdots, \alpha_p)$ iff $\mathfrak{A} \models A(\beta_1, \cdots, \beta_p)$.

Suppose now that p=n+1, $\{\alpha_1, \cdots, \alpha_p\}$ is good, i.e. $R_{n+1}(\alpha_1, \cdots, \alpha_p)$ holds. On the other hand $\{\beta_1, \cdots, \beta_p\}$ is not good but every proper subset is. Then for a formula A as above, $\mathfrak{A} \models A(\alpha_1, \cdots, \alpha_p)$ iff $\mathfrak{A} \models A(\alpha_1, \cdots, \alpha_p)$ iff $\mathfrak{A} \models A(\alpha_1, \cdots, \alpha_p)$

 $A(\beta_1, \dots, \beta_p)$. However, $R_{n+1}(\alpha_1, \dots, \alpha_p)$ holds and $R_{n+1}(\beta_1, \dots, \beta_p)$ does not. Thus R_{n+1} is not definable from R_1, \dots, R_n . Q.E.D.

Suppose now that we have a finite set F of notions definable in T. Then they will be definable from some finite set R_1, \dots, R_n . But then R_{n+1} is not definable from F. Hence the language of T is essentially infinite.

REFERENCE

1. J. R. Shoenfield, Mathematical logic, Addison-Wesley, Reading, Mass., 1967. MR 37 #1224.

DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS 02215