SEMIGROUPS OF MULTIPLIERS ASSOCIATED WITH SEMIGROUPS OF OPERATORS

A. OLUBUMMO

ABSTRACT. Let G be an infinite compact group with dual object Σ . Corresponding to each semigroup $S = \{T(\xi); \xi \ge 0\}$ of operators on $L_p(G)$, $1 \le p < \infty$, which commutes with right translations, there is a semigroup $\mathbb{S} = \{E_{\xi}(\sigma); \xi \ge 0, \sigma \in \Sigma\}$ of $L_p(G)$ multipliers. If S is strongly continuous, then $\{E_{\xi}(\sigma); \xi \ge 0\}$ is uniformly continuous for each σ . Conversely a semigroup S of $L_p(G)$ -multipliers determines a semigroup S of operators on $L_p(G)$. S is strongly continuous if each $E_{\xi}(\sigma)$ is uniformly continuous; and then there exist a function A on Σ and $\Sigma_0 \subset \Sigma$ such that $E_{\xi}(\sigma) = E_0(\sigma) \exp(\xi A_{\sigma})$ if $\sigma \in \Sigma_0$ and $E_{\xi}(\sigma) = 0$ if $\sigma \notin \Sigma_0$.

- 1. Introduction. Let X be a Banach space and denote by B(X) the Banach algebra of all bounded linear operators on X with the operator norm. A family $\mathcal{F} = \{T(\xi); \xi \geq 0\}$ of operators in B(X) is called a *strongly continuous semigroup of operators on* X if
 - (i) $T(\xi_1 + \xi_2)x = T(\xi_1)[T(\xi_2)x], \xi_1, \xi_2 \in [0, \infty), x \in X;$
 - (ii) $\lim_{\xi \to 0^+} T(\xi) x = T(0) x, x \in X$.
- If (i) holds and (ii) is replaced by
 - (iii) $\lim_{\xi \to 0^+} ||T(\xi) T(0)|| = 0$,

then \mathcal{I} is called a uniformly continuous semigroup of operators on X.

Let G be an infinite compact group with dual object Σ . We denote by $\Im(\Sigma)$ the set $PB_{\sigma \in \Sigma}(H_{\sigma})$, where H_{σ} is the representation space of the representation $U^{(\sigma)}$ [1, 28.24]. Suppose that $\mathfrak A$ and $\mathfrak B$ are subsets of $\Im(\Sigma)$. An element E of $\Im(\Sigma)$ is said to be an $(\mathfrak A, \mathfrak B)$ -multiplier if $EA \in \mathfrak B$ for all $A \in \mathfrak A$ [1, 35.1]. If E is an $(\mathfrak A, \mathfrak A)$ -multiplier, we shall call E, simply, an $\mathfrak A$ -multiplier.

Throughout this paper, G denotes an infinite, compact group with dual object Σ . Haar measure on G is denoted by λ , and it will be assumed that λ is normalized so that $\lambda(G)=1$. For $1\leq p<\infty$, $L_p(G)$ denotes the usual Lebesgue space formed with respect to λ . The set of Fourier transforms \widehat{f} of $f\in L_p(G)$ will be denoted by $L_p(G)$. It is shown in $[1,\ 28.34]$ that $L_p(G)$ is a subset of $\mathbb{C}(\Sigma)$. To simplify our notation, we shall write $L_p(G)$ -multiplier' in place of $L_p(G)$ -multiplier'.

Received by the editors November 5, 1973.

AMS (MOS) subject classifications (1970). Primary 43A22, 43A30, 47D05.

By a semigroup of $L_p(G)$ -multipliers we shall mean a function E on $[0,\infty)\times\Sigma$ such that

- (i) for each pair (ξ, σ) , $E_{\xi}(\sigma) \in B(H_{\sigma})$;
- (ii) for each fixed ξ , $E_{\xi}(\cdot)$ is an $L_{p}(G)$ -multiplier;
- (iii) for each fixed σ , $\{E_{\xi}(\sigma); \xi \geq 0\}$ is a semigroup of operators on H_{σ} .

The results of this paper can be summarized as follows. Given a semigroup $\mathcal{T}=\{T(\xi);\xi\geq 0\}$ of operators on $L_p(G)$, the elements of which commute with right translations, we associate with \mathcal{T} a semigroup $\mathcal{E}=\{E_{\xi}(\sigma);\,\xi\geq 0,\,\sigma\in\Sigma\}$ of $L_p(G)$ -multipliers. We show that if \mathcal{T} is strongly continuous, then $\{E_{\xi}(\sigma);\,\xi\geq 0\}$ is uniformly continuous for each σ . Conversely, given a semigroup $\mathcal{E}=\{E_{\xi}(\sigma);\,\xi\geq 0,\,\sigma\in\Sigma\}$ of $L_p(G)$ -multipliers, we associate with \mathcal{E} a semigroup $\mathcal{T}=\{T(\xi);\,\xi\geq 0\}$ of operators on $L_p(G)$, the members of which commute with right translations. We prove, moreover, that if $\{E_{\xi}(\sigma);\,\xi\geq 0\}$ is uniformly continuous for each σ , then \mathcal{T} is strongly continuous. Furthermore, we show that there exist $A=(A_{\sigma})$ in $\mathcal{E}(\Sigma)$ and a subset Σ_0 of Σ such that $E_{\xi}(\sigma)=E_0(\sigma)\exp(\xi A_{\sigma})$ if $\sigma\in\Sigma_0$ and $E_{\xi}(\sigma)=0$ if $\sigma\notin\Sigma_0$. Finally, we prove that if \mathcal{T} is the infinitesimal operator of \mathcal{T} , then A is a $(D(\mathcal{C}),L_p(G))$ -multiplier.

The results and proofs in the present paper generalize to arbitrary infinite compact groups those of Hille [2, Theorems 20.3.1 and 20.3.2] for the circle group and those obtained in [5] for compact Abelian groups. It will be clear, however, that the orientation here is somewhat different from that of [2] and [5]. Moreover, it is hoped that our proofs and results shed some light on the classical situation.

- 2. Preliminaries. Let G and Σ be as defined above. It will be assumed throughout this paper that, for each $\sigma \in \Sigma$, a fixed representation $U^{(\sigma)}$ with representation space H_{σ} has been chosen and that, in each H_{σ} , a fixed conjugation D_{σ} has been chosen. It will be understood that all Fourier-Stieltjes transforms and Fourier transforms are defined in terms of these fixed $U^{(\sigma)}$'s and D_{σ} 's. In this and other definitions and notation, we follow Hewitt and Ross [1] where any undefined terms concerning harmonic analysis, used in this paper, will be found. Similarly, the reader is referred to Hille and Phillips [2] for an account of the theory of semigroups of operators on a Banach space.
- 2.1. Lemma. Let $\sigma \in \Sigma$ and for $U^{(\sigma)}$ in σ with representation space H_{σ} let $\mathfrak{T}_{\sigma}(G)$ denote the set of all finite complex linear combinations of functions of the form $x \to \langle U_x^{(\sigma)} \xi, \eta \rangle$ as ξ , η vary over H_{σ} . Then $\{\hat{f}(\sigma): f \in \mathfrak{T}_{\sigma}(G)\} = B(H_{\sigma})$.

This is [1, Theorem (28.39)(i)].

- 2.2. Lemma. Let T be a bounded linear operator on $L_p(G)$ which commutes with right translations. Then there exists a unique $E \in \mathbb{S}(\Sigma)$ such that $(Tf)\hat{\ }(\sigma) = E(\sigma)\hat{f}(\sigma)$ for all $f \in L_p(G)$ and all $\sigma \in \Sigma$.
- **Proof.** Since T commutes with right translations a routine argument shows that T(f * g) = (Tf) * g for all f, $g \in L_p(G)$ (see e.g. [1, p. 376]). The result now follows from Theorem 35.8 of [1] and Lemma 2.1 above.
 - 3. Semigroups of operators and semigroups of multipliers.
- 3.1. Theorem. Let $\mathcal{T}=\{T(\xi);\ \xi\geq 0\}$ be a semigroup of bounded linear operators on $L_p(G)$, each of which commutes with right translations. Then \mathcal{T} defines a semigroup $\mathcal{E}=\{E_\xi(\sigma);\ \xi\geq 0,\ \sigma\in\Sigma\}$ of $L_p(G)$ -multipliers. If, in addition, \mathcal{T} is strongly continuous, then, for each $\sigma\in\Sigma$, the set $\{E_\xi(\sigma);\ \xi\geq 0\}$ is a uniformly continuous semigroup of operators on H_σ .
- **Proof.** By Lemma 2.2, there exists, for each $\xi \geq 0$, a unique $E_{\xi} \in \mathbb{S}(\Sigma)$ such that $(T(\xi)f)^{\hat{}} = E_{\xi}\hat{f}$ for every $f \in L_p(G)$. To complete the proof of the first assertion of the theorem, we only need to show that for each fixed $\sigma \in \Sigma$, the set $\{E_{\xi}(\sigma); \xi \geq 0\}$ is a semigroup of operators on H_{σ} . We have, for $f \in L_p(G)$ and $\xi_1, \xi_2 \geq 0$,

$$\begin{split} E_{\xi_1 + \xi_2}(\sigma) \widehat{f}(\sigma) &= (T(\xi_1 + \xi_2) f) \widehat{}(\sigma) = [T(\xi_1) (T(\xi_2) f)] \widehat{}(\sigma) \\ &= E_{\xi_1}(\sigma) (T(\xi_2) f) \widehat{}(\sigma) = E_{\xi_1}(\sigma) E_{\xi_2}(\sigma) \widehat{f}(\sigma). \end{split}$$

Since, by Lemma 2.1, there exists $f \in \mathfrak{T}_{\sigma}(G)$ such that $\widehat{f}(\sigma) = I_{\sigma}$, we have $E_{\xi_1 + \xi_2}(\sigma) = E_{\xi_1}(\sigma)E_{\xi_2}(\sigma)$. Hence, $\mathfrak{E} = \{E_{\xi}(\sigma); \ \xi \geq 0, \ \sigma \in \Sigma\}$ is a semigroup of $L_b(G)$ -multipliers.

Suppose that $T(\xi)$ is strongly continuous and let σ be a fixed element of Σ . By Lemma 2.1, there exists $t \in \mathfrak{T}(G)$ such that $\hat{t}(\sigma) = \mathfrak{T}_{\sigma}$. Let $\epsilon > 0$; there exists $\gamma > 0$ such that $\|[T(\xi) - T(0)]t\|_p < \epsilon$ for all ξ satisfying $0 < \xi < \gamma$. We have

$$\begin{split} \|E_{\xi}(\sigma) - E_{0}(\sigma)\|_{B(H_{\sigma})} &= \|E_{\xi}(\sigma) - E_{0}(\sigma)\|_{\phi_{\infty}} \quad [1, D.42] \\ &= \|[E_{\xi}(\sigma) - E_{0}(\sigma)]\hat{\imath}(\sigma)\|_{\phi_{\infty}} = \|([T(\xi) - T(0)]\imath)^{\hat{}}(\sigma)\|_{\phi_{\infty}} \\ &\leq \|([T(\xi) - T(0)]\imath)^{\hat{}}\|_{\infty} \quad [1, 28.34] \\ &\leq \|[T(\xi) - T(0)]\imath\|_{1} \quad [1, 28.36] \\ &\leq \|[T(\xi) - T(0)]\imath\|_{p} < \epsilon \end{split}$$

for all ξ satisfying $0 < \xi < \gamma$. This concludes the proof.

3.2. Corollary. If \mathcal{I} is strongly continuous, then there exist a subset Σ_0 of Σ and an $A \in \mathbb{S}(\Sigma)$ such that

$$E_{\xi}(\sigma) = \begin{cases} E_0(\sigma) \exp(\xi A_{\sigma}) & \text{if } \sigma \in \Sigma_0, \\ 0 & \text{if } \sigma \notin \Sigma_0. \end{cases}$$

Proof. By Theorem 9.6.1 of [2], $E_0(\sigma)$ is, for each σ , a projection operator and

$$E_{\mathcal{E}}(\sigma) = E_{\mathcal{E}}(\sigma)E_0(\sigma) = E_0(\sigma)E_{\mathcal{E}}(\sigma).$$

In particular, if $E_0(\sigma) = 0$, then $E_{\xi}(\sigma) = 0$ for all ξ . If for a given σ , $E_0(\sigma)$ is not the zero operator, then there exists a (unique) $A_{\sigma} \in B(H_{\sigma})$ such that $E_{\xi}(\sigma) = E_0(\sigma) \exp(\xi A_{\sigma})$. Now define $A \in \mathbb{S}(\Sigma)$ by setting $A(\sigma) = A_{\sigma}$ for each $\sigma \in \Sigma$, and set $\Sigma_0 = [\sigma \in \Sigma : E_0(\sigma) \neq 0]$.

3.3. Theorem. Let $\mathcal{E} = \{E_{\xi}(\sigma); \xi \geq 0, \sigma \in \Sigma\}$ be a semigroup of $L_p(G)$ multipliers. Then \mathcal{E} defines a semigroup $\mathcal{I} = \{T(\xi); \xi > 0\}$ of bounded linear operators on $L_{h}(G)$, each of which commutes with right translations. If, in addition, for each σ , the set $\{E_{\xi}(\sigma); \xi \geq 0\}$ is a uniformly continuous semigroup of operators on H_{σ} , then $\mathcal T$ is a strongly continuous semigroup of operators on $L_p(G)$.

Proof. For each $\xi \geq 0$, we define $T(\xi)$ on $L_{\mathfrak{p}}(G)$ by $(T(\xi)f)^{\hat{}} = E_{\xi}\hat{f}$, $f \in L_p(G)$. Then, by [1, 35.2], $T(\xi)$ is a bounded linear operator on $L_p(G)$. That the operators $T(\xi)$ have the semigroup property follows directly from the definition. We show that $T(\xi)$ commutes with right translations. First, we note that if $f \in L_p(G)$, then, for each $x \in G$,

(1)
$$\widehat{f}_{x}(\sigma) = \widehat{f}(\sigma)\overline{U}_{x}^{(\sigma)}$$

for each $\sigma \in \Sigma$. In fact, for all ξ , $\eta \in H_{\sigma}$,

$$\begin{split} \langle \widehat{f}(\sigma) \overline{U}_{x-1}^{(\sigma)} \xi, \, \eta \rangle &= \langle \widehat{f}(\sigma) (\overline{U}_{x-1}^{(\sigma)} \xi), \, \eta \rangle \\ &= \int_{G} \langle \overline{U}_{y}^{(\sigma)} (\overline{U}_{x-1}^{(\sigma)} \xi), \, \eta \rangle f(y) d\lambda(y) = \int_{G} \langle \overline{U}_{yx-1}^{(\sigma)} \xi, \, \eta \rangle f(y) d\lambda(y) \\ &= \int_{G} \langle \overline{U}_{y}^{(\sigma)} \xi, \, \eta \rangle f_{x}(y) d\lambda(y) = \langle \widehat{f}_{x}(\sigma) \xi, \, \eta \rangle, \end{split}$$

and hence
$$\hat{f}_x(\sigma) = \hat{f}(\sigma)U_{x-1}^{(\sigma)}$$
, $\sigma \in \Sigma$.
Now $(T(\xi)f_x)(\sigma) = E_{\xi}(\sigma)\hat{f}_x(\sigma)$ and

$$([T(\xi)f]_x)^{\hat{}}(\sigma) = (T(\xi)f)^{\hat{}}(\sigma)\overline{U}_{x-1}^{(\sigma)} \quad \text{(by (1))}$$

$$= E_{\xi}(\sigma)\widehat{f}(\sigma)\overline{U}_{x-1}^{(\sigma)} = E_{\xi}(\sigma)\widehat{f}_x(\sigma) \quad \text{(again by (1))}.$$

We therefore have $(T(\xi)f_x)^{\hat{}}(\sigma) = ([T(\xi)f]_x)^{\hat{}}(\sigma)$ for all $\sigma \in \Sigma$, which implies that $T(\xi)f_x = (T(\xi)f)_x$ for each $x \in G$.

Suppose now that for each $\sigma \in \Sigma$, the set $\{E_{\xi}(\sigma); \, \xi \geq 0\}$ is a uniformly continuous semigroup of operators on H_{σ} . To show that $\{T(\xi); \, \xi \geq 0\}$ is strongly continuous, we shall first show that for every coordinate function u, $\|[T(\xi) - T(\xi_0)]u\|_p \to 0$ as $\xi \to \xi_0$. Let σ be an arbitrary, but fixed, element of Σ . Let $U^{(\sigma)} \in \sigma$ and let $\{\xi_1, \, \xi_2, \, \cdots \, \xi_d\}$ be a basis in H_{σ} . We consider the coordinate function $u_{jk}^{(\sigma)}$ defined on G by $u_{jk}^{(\sigma)}(x) = \langle U_x^{(\sigma)} \xi_k, \, \xi_j \rangle$, where j, k is a fixed pair from $\{1, \, 2, \, \cdots \, , \, d_{\sigma}\}$. We have, for all $\sigma' \in \Sigma$,

$$([T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)})^{\hat{}}(\sigma') = (E_{\xi} - E_{\xi_0})(\sigma')\hat{u}_{jk}^{(\sigma)}(\sigma')$$

$$= \begin{cases} (E_{\xi} - E_{\xi_0})(\sigma)u_{jk}^{(\sigma)}(\sigma) & \text{if } \sigma' = \sigma, \\ 0 & \text{if } \sigma' \neq \sigma, \end{cases}$$

by [1, p. 80, (2)]. Thus $([T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)})^{\hat{}} \in \mathbb{G}_{00}(\Sigma)$ and hence $[T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)}$

is a trigonometric polynomial [1, 28.39]. We now have

$$\begin{split} \|[T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)}\|_{p} &\leq \|[T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)}\|_{u} \\ &\leq \|[T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)}\|_{A(G)} \qquad [1, 34.6] \\ &= \sum_{\sigma' \in \Sigma} d_{\sigma'} \|([T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)})^{\hat{}}(\sigma')\|_{\phi_1} \qquad [1, 34.4] \\ &= d_{\sigma} \|([T(\xi) - T(\xi_0)]u_{jk}^{(\sigma)})^{\hat{}}(\sigma)\|_{\phi_1} \\ &= d_{\sigma} \|[E_{\xi}(\sigma) - E_{\xi_0}(\sigma)]\hat{u}_{jk}^{(\sigma)}(\sigma)\|_{\phi_1} \\ &\leq d_{\sigma} \|E_{\xi}(\sigma) - E_{\xi_0}(\sigma)\|_{\phi_{\infty}} \cdot \|\hat{u}_{jk}(\sigma)\|_{\phi_1} \qquad [1, D.52] \\ &= d_{\sigma} \|E_{\xi}(\sigma) - E_{\xi_0}(\sigma)\|_{B(H_{\sigma})} \cdot \|\hat{u}_{jk}^{(\sigma)}(\sigma)\|_{\phi_1} \qquad [1, D.42] \\ &\to 0 \quad \text{as } \xi \to \xi_0, \end{split}$$

by the uniform continuity of $E_{\xi}(\sigma)$. Hence, $\|[T(\xi) - T(\xi_0)]u\|_p \to 0$ as $\xi \to \xi_0$ for every coordinate function u. By the linearity of the operators $T(\xi)$,

$$\|[T(\xi) - T(\xi_0)]t\|_p \to 0$$
 as $\xi \to \xi_0$

for every function $t \in \mathfrak{T}(G)$. That $\|[T(\xi) - T(\xi_0)]f\|_p \to 0$ as $\xi \to \xi_0$ for every $f \in \mathcal{T}(G)$

 $L_p(G)$ now follows from the last assertion, the fact that $\mathfrak{T}(G)$ is dense in $L_p(G)$ and the continuity of the operators $T(\xi)$. This concludes the proof.

3.4. Let \mathcal{E} be as in Theorem 3.3 and suppose that, for each $\sigma \in \Sigma$, the set $\{E_{\xi}(\sigma); \xi \geq 0\}$ is a uniformly continuous semigroup of operators on H_{σ} . Then there exist a subset Σ_0 of Σ and an $A \in \mathbb{S}(\Sigma)$ such that

$$E_{\xi}(\sigma) = \begin{cases} E_0(\sigma) \, \exp(\xi A_{\sigma}) & \text{if } \sigma \in \Sigma_0, \\ 0 & \text{if } \sigma \notin \Sigma_0. \end{cases}$$

Let \mathfrak{A}_0 denote the infinitesimal operator of the semigroup \mathfrak{I} generated by \mathfrak{E} . The following theorem gives some information about the relation between \mathfrak{A}_0 and A. Here, as is usual, we set $E_0(\sigma) = I_{\sigma}$.

3.5. Theorem. For each f in the domain $D(\mathfrak{A}_0)$ of \mathfrak{A}_0 and $\sigma \notin \Sigma_0$, we have $\hat{f}(\sigma) = 0$. Furthermore, $(\mathfrak{A}_0 f)^{\hat{}} = A\hat{f}$ for $f \in D(\mathfrak{A}_0)$; i.e. A is a $(D(\mathfrak{A}_0), L_p(G))$ -multiplier. If, in particular, \mathcal{F} is of class (A) with infinitesimal generator \mathfrak{A} , then $\Sigma_0 = \Sigma$. If, in addition, $A \in \mathfrak{S}_\infty(\Sigma)$, then

$$D(\mathcal{C}) = [f \in L_p(G) : A\hat{f} \in L_p(G)^{\hat{}}],$$

and $(\mathfrak{A}f)^{\hat{}} = A\hat{f}$ for $f \in D(\mathfrak{A})$, so that A is a $(D(\mathfrak{A}), L_p(G))$ -multiplier.

Proof. Let $\epsilon > 0$; then there exists $\gamma > 0$ such that

$$\|\mathcal{C}_0 f - [T(\eta)f - f]/\eta\|_p < \epsilon$$

for $0 < \eta < \gamma$. This implies that if $\sigma \notin \Sigma_0$, then $\hat{f}(\sigma) = 0$, and if $\sigma \in \Sigma_0$,

$$(\mathfrak{A}_{0}f)^{\hat{}}(\sigma) = A_{\sigma}\hat{f}(\sigma), \quad f \in D(\mathfrak{A}_{0}).$$

Let $\mathcal T$ be of class (A). Then $D(\mathcal G_0)\subset D(\mathcal G)$ is dense in $L_p(G)$. Suppose there exists $\sigma_0\in \Sigma$ such that $\sigma_0\notin \Sigma_0$ and choose $f\in L_p(G)$ such that $\widehat f(\sigma_0)\neq 0$. Given $\epsilon>0$, there exists $f'\in D(\mathcal G_0)$ such that $\|f-f'\|_p<\epsilon$. Then

$$\|\hat{f}'(\sigma_0) - \hat{f}(\sigma_0)\|_{B(H_{\sigma_0})} \le \|f' - f\|_{\mathfrak{p}} < \epsilon,$$

which, by the first part of the theorem, implies that $f(\sigma_0) = 0$ a contradiction. This proves that $\Sigma_0 = \Sigma$.

To prove the last assertion of the theorem, let ω_0 be the type of the semigroup $\mathcal T$ and set $\mathfrak L_0 = \bigcup \{T(\xi)[L_p(G)]; \ \xi \geq 0\}$. For λ with $\operatorname{Re}(\lambda) > \omega_0$, let $R(\lambda; \ \mathcal C)$ denote the resolvent of $\mathcal C$. Then [2, p. 342] there exists $\omega_1 > \omega_0$ such that

$$R(\lambda; \mathfrak{A}) f = \int_0^\infty e^{-\lambda \xi} T(\xi) f d\xi, \quad f \in \mathfrak{A}_0, \operatorname{Re}(\lambda) > \omega_1.$$

For each $\sigma \in \Sigma$, write $S_{\sigma}(f) = \hat{f}(\sigma)$, $f \in L_{p}(G)$. Then S_{σ} is a bounded linear

transformation on $L_{p}(G)$ into $B(H_{\sigma})$, and for all $f \in \mathcal{Q}_{0}$,

$$\begin{split} S_{\sigma}(R(\lambda;\mathcal{C})f) &= \int_{0}^{\infty} e^{-\lambda \xi} S_{\sigma}(T(\xi)f) d\xi = \int_{0}^{\infty} e^{-\lambda \xi} E_{\xi}(\sigma) \hat{f}(\sigma) d\xi \\ &= \int_{0}^{\infty} e^{-\lambda I_{\sigma}\xi} e^{\xi A_{\sigma}} \hat{f}(\sigma) d\xi = \int_{0}^{\infty} e^{\xi (A_{\sigma} - \lambda I_{\sigma})} d\xi \hat{f}(\sigma) = (\lambda I_{\sigma} - A_{\sigma})^{-1} \hat{f}(\sigma), \end{split}$$

for all λ with $\operatorname{Re}(\lambda) > \max(\omega_1, \|A\|_{\infty})$, [2, (11.2.3)]. Since \mathcal{Q}_0 is dense in $L_b(G)$, [2, p. 342], we have

$$(R(\lambda; \mathcal{C})f)^{\hat{}}(\sigma) = (\lambda I_{\sigma} - A_{\sigma})^{-1}\hat{f}(\sigma)$$

for all $f \in L_p(G)$, $\operatorname{Re}(\lambda) > \max(\omega_1, \|A\|_{\infty})$. We now make use of the last assertion to prove that

$$D(\mathcal{C}) = [f \in L_{\mathfrak{p}}(G) \colon A\widehat{f} \in L_{\mathfrak{p}}(G)^{\widehat{}}].$$

Let $f \in D(\mathfrak{A})$ and let σ be an arbitrary element of Σ . Choose λ such that $\lambda > \max(\omega_1, \|A\|_{\infty})$. Then there exists $g \in L_p(G)$ such that $f = R(\lambda; \mathfrak{A})g$, and we have

$$(\widehat{\mathbf{G}}_f)^{\hat{}}(\sigma) = [\lambda R(\lambda, \widehat{\mathbf{G}})g - g]^{\hat{}}(\sigma) = \lambda(\lambda I_{\sigma} - A_{\sigma})^{-1}\widehat{g}(\sigma) - \widehat{g}(\sigma)$$
$$= A_{\sigma}(\lambda I_{\sigma} - A_{\sigma})^{-1}\widehat{g}(\sigma) = A_{\sigma}\widehat{f}(\sigma).$$

Since σ was arbitrary, $(\widehat{\mathbb{G}}f)(\sigma) = A_{\sigma}\widehat{f}(\sigma)$ for every $\sigma \in \Sigma$. Thus, if $f \in D(\widehat{\mathbb{G}})$, then $A\widehat{f} \in L_p(G)$. Conversely, suppose that f is an element of $L_p(G)$ such that $A\widehat{f} \in L_p(G)$. Thus, there exists $h \in L_p(G)$ such that $A_{\sigma}\widehat{f}(\sigma) = \widehat{h}(\sigma)$ for all $\sigma \in \Sigma$. The function $g = \lambda f - h \in L_p(G)$ for all complex numbers λ . If $\lambda > \max(\omega_1, \|A\|_{\infty})$, we have

$$(R(\lambda; \widehat{\mathcal{C}})g)^{\hat{}}(\sigma) = (\lambda I_{\sigma} - A_{\sigma})^{-1}\widehat{g}(\sigma)$$

$$= (\lambda I_{\sigma} - A_{\sigma})^{-1}(\lambda\widehat{f}(\sigma) - A_{\sigma}\widehat{f}(\sigma)) = \widehat{f}(\sigma),$$

for all $\sigma \in \Sigma$. Hence $R(\lambda; \mathfrak{A})g = f$, which implies that $f \in D(\mathfrak{A})$. This concludes the proof.

3.6. Remarks. As an example of the situation described in Theorem 3.1, we mention the heat-diffusion semigroup $\{T^t; t \geq 0\}$ of operators on $L_p(G)$ for a compact Lie group G discussed by Stein [4, p. 38]. Also, one obtains an illustration of Theorem 3.3 by considering the Fourier-Stieltjes transforms of the semigroup $\{\mu_i; t \geq 0\}$ of measures in M(G) studied by Hunt [3].

REFERENCES

1. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970. MR 41 #7378; erratum, 42, p. 1825.

- 2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
- 3. G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. MR 18, 54.
- 4. E. M. Stein, *Topics in harmonic analysis related to the Littlewood-Paley theory*, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 #6176.
- 5. V. A. Babalola and A. Olubummo, Semigroups of operators commuting with translations, Colloq. Math. 31 (1974), 241-246.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA