AN ERGODIC SUPER-PROPERTY OF BANACH SPACES DEFINED BY A CLASS OF MATRICES

A. BRUNEL, H. FONG ${ }^{1}$ AND L. SUCHESTON ${ }^{1}$

ABSTRACT. A matrix ($a_{n i}$) is called an R-matrix if (A) $\sum_{i} a_{n i} \nrightarrow 0$, and (B) $\lim _{n} a_{n i}=0$ for each i. A Banach space X is called R-ergodic if for each isometry T and each $x \in X$, there is an R-matrix ($a_{n i}$) such that $\sum_{i} a_{n i} T^{i} x \xrightarrow{\mathbf{w}}$ (converges weakly). Given two Banach spaces F and X, write ${ }^{2}$ fr X if for each finite-dimensional subspace F^{\prime} of F and $\epsilon>0$, there is an isomorphism V from F^{\prime} onto a subspace of X such that $|\|x\|-\|V x\||<\epsilon$ for each $x \in F^{\prime}$ with $\|x\| \leq 1 . X$ is called super-R-ergodic if F is R-ergodic for each F fr X.

Theorem. X is super-R-ergodic if and only if X is superreflexive.
The proof is based on the following:
Theorem. Let T be a linear operator on $X,\left(a_{n i}\right)$ a matrix satisfying (A), $x \in X$ such that $\sum_{i} a_{n i} T^{i}{ }_{x} \stackrel{\mathbf{w}}{\bar{x}}$. Then there is a constant a such that $(x-\alpha \bar{x}) \in(\overline{I-T) X}$.

A matrix ($a_{n i}$) with real terms is called an R-matrix iff it satisfies the following conditions:

$$
\begin{equation*}
\sum_{i} a_{n i} \nrightarrow 0 \text { as } n \rightarrow \infty ; \tag{A}
\end{equation*}
$$

(B)

$$
\lim _{n} a_{n i}=0 \quad \text { for each } i
$$

Condition (A) means that $\Sigma_{i} a_{n i}$ exists for each n and the sequence $\left(\Sigma_{i} a_{n i}\right)$ either diverges or converges to a limit different from zero.

A Banach space X is called R-ergodic iff for each isometry T and each $x \in X$ there exists an R-matrix ($a_{n i}$) such that $\Sigma_{i} a_{n i} T^{i} x$ converges weakly. It is shown that X is super- R-ergodic if and only if it is super-stable (equivalently, super-reflexive). Since R-ergodicity is clearly implied by

Presented to the Society, February 28, 1974; received by the editors June 11, 1973 and, in revised form, March 1, 1974.

AMS (MOS) subject clas sifications (1970). Primary 47A35; Secondary 46B10.
Key words and phrases. R-matrices, super-properties, R-ergodic, reflexive, stable.
${ }^{1}$ This work is supported by the National Science Foundation, grant GP 34118.
ergodicity, this is an improvement over the results of [1] and [2], to which the present theorem is reduced by an ergodic argument. It is further observed that a Banach space X is reflexive if and only if for each bounded sequence $\left(x_{i}\right)$ in X there is an R-matrix $\left(a_{n i}\right)$ such that $\Sigma_{i} a_{n i} x_{i} \xrightarrow{\mathbf{W}}(\stackrel{\mathbb{W}}{ }$ means: converges weakly).

1. A real Banach space X is given, with elements x, y, \cdots. Sequences of real numbers are denoted by $a=\left(a_{i}\right), b=\left(b_{i}\right)$, etc. S is the set of all sequences (a_{i}) such that $a_{i} \neq 0$ for only finitely many indices i. Whenever we write $\Sigma a_{i} x_{i}$, we tacitly assume that the summation makes sense in X. Given an operator T, we write $A_{n}(T)$ or A_{n} for the operator $(1 / n)\left(T^{0}+T^{1}+\cdots+T^{n-1}\right)$. The following theorem relates the local behavior of $\Sigma_{i} a_{n i} T^{i}$ to the local behavior of $A_{n}(T)$. An A-matrix is one satisfying the condition (A).

Theorem 1. Let T be a linear operator in $X,\left(a_{n i}\right)$ an A-matrix, and x in X such that $\Sigma_{i} a_{n i} T^{i} x \xrightarrow{\mathbf{w}} \bar{x}$. Then there exists a constant a such that $(x-\alpha \bar{x})$ belongs to the closure of $(I-T) X$. a may be chosen equal to 1 if $\lim _{n} \Sigma_{i} a_{n i}=1 . A_{n}(x-\alpha \bar{x}) \rightarrow 0$ if

$$
\begin{equation*}
\sup _{n}\left\|A_{n}(T)\right\|<\infty \quad \text { and } \quad T^{n} / n \rightarrow 0 \text { strongly. } \tag{1}
\end{equation*}
$$

Proof. We first prove the theorem under the additional assumption that $\Sigma_{i} a_{n i}=1$ and $\left(a_{n i}\right)_{i} \in S$ for each n. Let a map $\phi: S \rightarrow X$ be defined by $\phi(a)=\Sigma a_{i} T^{i} x$. If $\Sigma_{i=0}^{n-1} b_{i}=0$, then

$$
\begin{aligned}
\sum_{i=0}^{n-1} b_{i} T^{i}= & b_{0}(I-T)+\left(b_{0}+b_{1}\right)\left(T-T^{2}\right)+\left(b_{0}+b_{1}+b_{2}\right)\left(T^{2}-T^{3}\right) \\
& +\cdots+\left(b_{0}+b_{1}+\cdots+b_{n-1}\right)\left(T^{n-1}-T^{n}\right) \\
= & P(T)(I-T),
\end{aligned}
$$

where $P(T)$ is a polynomial in T. Therefore for each $b \in S$,

$$
\phi(b) \epsilon(I-T) \phi(S)
$$

if $\Sigma b_{i}=0$. This remark is applied to the sequence $\left(b_{i}\right)$ defined by $b_{0}=$ $a_{n 0}-1, b_{i}=a_{n i}$ for $i>0, n$ fixed. It follows that for each n there exists a $y_{n} \in \phi(S)$ such that $\Sigma_{i} a_{n i} T^{i} x-x=y_{n}-T y_{n}$. Therefore $\bar{x}-x$ belongs to the weak closure of ($I-T) \phi(S)$, identical (Hahn-Banach) with the strong closure $\left(\overline{I-T) \phi(S)}\right.$. Assume (1); $A_{n}(x-\bar{x}) \rightarrow 0$ follows, by approximation,
from convergence to zero of expressions of the form $T^{n} y / n, y \in X$.
Now consider the general case. Let K be the set of all strictly increasing sequences of nonnegative integers. We may assume that there is a positive number β such that $\Sigma_{i} a_{n i}>\beta$ for each n. (If necessary, replace ($a_{n i}$) by $\left(a_{k_{n}, i}\right),\left(k_{n}\right) \in \mathbf{K}$; if necessary, change signs.) Let $x_{i}=T^{i} x^{\prime}\left(k_{n}\right) \in K$ be such that $\left|\Sigma_{i>k_{n}} a_{n i}\right|<1 / n$ and $\left\|\Sigma_{i>k_{n}} a_{n i} x_{i}\right\|<1 / n$. Let $d_{n i}=a_{n i}$ if $i \leq k_{n}$; $d_{n i}=0$ for $i>k_{n}$. Then $\left(d_{n i}\right)$ is an A-matrix, $\left(d_{n i}\right)_{i} \in S$ for each n and $\beta \leq$ $\lim \inf _{n} \Sigma_{i} d_{n i}=d \leq \infty$. The last lim inf may be assumed to be limit, because ($d_{n i}$) may again be replaced by a submatrix. Set $b_{n i}=d_{n i} / \Sigma_{j} d_{n j}$ for all n and i. Then $\left(b_{n i}\right)$ is an A-matrix, and for each $n,\left(b_{n i}\right)_{i} \in S$ and $\Sigma_{i} b_{n i}=1$. Furthermore, $\Sigma_{i} d_{n i}{ }_{i} \xrightarrow{W} \bar{x}$ implies that $\Sigma_{i} b_{n i}{ }_{i} \xrightarrow{W} \alpha \bar{x}$, with $\alpha=1 / d$. The first part of the proof now applies to the matrix ($b_{n i}$), showing that ($x-a \bar{x}$) $\epsilon(\overline{I-T) X} . \cdot \vdash$

Corollary 1 (Ergodic theorem of Yosida-Kakutani; cf. [4, p. 661]).
Assume (1) and let $x \in X$ be such that $A_{k_{n}} x \xrightarrow{\mathbf{w}} \bar{x}$ for some $\left(k_{n}\right) \in \mathbf{K}$. Then $A_{n} x \rightarrow \bar{x}$.

Proof. ($I-T$) $A_{k_{n}} x$ converges to zero (cancellation properties of Cesàro averages) and also converges weakly to $(I-T) \bar{x}$. Therefore $T \bar{x}=\bar{x}$. Write $A_{k_{n}} x=\Sigma_{i} a_{n i} T^{i} x$; then $\left(a_{n i}\right)$ is an A-matrix with $\Sigma_{i} a_{n i}=1$; thus $A_{n}(x-\bar{x})=$ $A_{n} x-\bar{x} \rightarrow 0 . \vdash$

Given two Banach spaces $X,\| \|$ and $F, \|, F$ is said to be finitely representable in X, in symbols F fr X, iff for each finite-dimensional subspace F^{\prime} of F and each number $\epsilon>0$, there is an isomorphism V of F^{\prime} into X such that $||x|-\|V x\|| \leq \epsilon$ for each x in the unit ball $U_{F^{\prime}}$ of F^{\prime}. If P is a property of Banach spaces, say that X is super $-P$ iff $F \mathrm{fr} X$ implies that F is P. X is called R-ergodic iff for each isometry T on X and each $x \in X$ there exists an R-matrix ($a_{n i}$) such that $\Sigma_{i} a_{n i} T^{i} x$ converges weakly. A bounded sequence $\left(x_{n}\right)$ in X is called stable iff there is an element \bar{x} such that

$$
\left\|(1 / n)\left(x_{k_{1}}+\cdots+x_{k_{n}}\right)-\bar{x}\right\| \rightarrow 0
$$

uniformly in the set K. X is called stable iff every bounded sequence contains a stable subsequence.

Theorem 2. A Banach space is super-stable if (and only if) it is super-R-ergodic.

Proof. In [1] and [2] the same result is proved with ergodicity (i.e., strong convergence of $A_{n}(T)$ for each isometry T) instead of R-ergodicity. Assume that Y is super- R-ergodic and let X fr Y. We follow the notation and argument in [1]. From a sequence $\left(x_{n}\right)$ in U_{X} we wish to extract a stable subsequence. First obtain a subsequence $\left(e_{n}\right)$ of $\left(x_{n}\right)$ such that the space F generated by (e_{n}) and a new norm || satisfies F fr X, and also $(1 / n)\left(e_{0}+\cdots+e_{n-1}\right) \rightarrow$ in F implies that $\left(e_{n}\right)$ contains a subsequence stable in X [1, Proposition 3]. The shift T on (e_{n}) is an isometry, and the norm || is of type (IS), or "invariant under spreading" of the e_{n} 's [1, Lemma 1]. The (IS) property implies that, in ergodic terminology, the "tail" space is equal to the "invariant" space (strictly speaking, the space of the invariant elements). We mean by this that $x \in \bigcap_{k} T^{k} F$ if and only if $T x=x$ [1, Lemma 4]. Now F fr X fr Y implies F fr Y; hence F is R-ergodic: There exists an R-matrix ($a_{n i}$) and an element \bar{e} such that $x_{n}=\Sigma_{i} a_{n i} e_{i} \xrightarrow{\mathbf{w}} \bar{e}$ in F. The property (B) of the matrix implies that for each k, \bar{e} belongs to the weak closure of $T^{k} F$, hence $\bar{e} \in T^{k} F$. Indeed, if $y_{n}=\Sigma_{i \geq k} a_{n i} e_{i}$, then $y_{n} \in T^{k} F$ for each n and $\left|x_{n}-y_{n}\right| \rightarrow 0$, implying $y_{n} \xrightarrow{\mathbf{w}} \bar{e}$. Therefore $T \bar{e}=\bar{e}$. From Theorem 1 we obtain that $A_{n} e_{0} \rightarrow \bar{e}$ in F. Therefore (e_{n}) has a subsequence stable in X. Since $\left(x_{n}\right)$ is arbitrary, X is stable; since X is an arbitrary space satisfying X fr Y, Y is super-stable. -
R-matrices appear in the following characterization of reflexivity.
Theorem 3. A Banach space X is reflexive if and only if for each sequence $\left(x_{n}\right)$ in U_{X} there is an R-matrix $\left(a_{n i}\right)$ such that $\Sigma_{i} a_{n i} x_{i}$ converges weakly.

Proof. The only if part follows at once from the known characterization of reflexivity in terms of weak sequential compactness of U_{X}. The if part is a simple consequence of a deep theorem of PeХczyński [6]; we learned about this theorem from Professor W. Johnson. Assume that X is not reflexive. By [6] there exists a bounded basic sequence (x_{i}) and a bounded linear functional f such that $\lim \sup _{i} f\left(x_{i}\right)>0$. Passing to a subsequence if necessary, we may assume that there is an $\alpha>0$ with $f\left(x_{i}\right) \geq \alpha$ for each i. Set $y_{i}=x_{i} / f\left(x_{i}\right)$; then $\left(y_{i}\right)$ is a bounded basic sequence and $f\left(y_{i}\right)=1$ for each i. Assume that there is an R-matrix ($a_{n i}$) such that $\Sigma_{i} a_{n i} y_{i} \xrightarrow{\mathbf{w}} \bar{y}$; let $\bar{y}=$ $\Sigma_{i} a_{i} y_{i}$. The continuity of the coefficient functionals and condition (B)
imply that $a_{i}=\lim _{n} a_{n i}=0$ for each i. Thus $\bar{y}=0$. Now

$$
0=f(\bar{y})=\lim _{n} f\left(\sum_{i} a_{n i} y_{i}\right)=\lim _{n} \sum_{i} a_{n i} f\left(y_{i}\right)=\lim _{n} \sum_{i} a_{n i}
$$

which contradicts condition (A). \vdash
Remarks. (1) A-matrices and R-matrices have the following properties: Given a bounded sequence $\left(x_{i}\right)$, if there is an A-matrix (resp., $R-$) ($a_{n i}$) such that $\Sigma_{i} a_{n i} x_{i} \xrightarrow{\mathbf{w}}$, then there is another A-matrix (resp., $R-$) ($b_{n i}$) such that $\Sigma_{i} b_{n i} x_{i} \rightarrow$ strongly. This easily follows from Mazur's theorem [4, p. 422, Corollary 14].
(2) Condition (A) (and trivially, condition (B)) cannot be dispensed with in Theorem 3: The space c_{0} is alternate signs Banach-Saks: i.e., each bounded sequence contains a subsequence $\left(y_{i}\right)$ with

$$
(1 / n)\left(y_{1}-y_{2}+\cdots+(-1)^{n-1} y_{n}\right) \rightarrow 0
$$

[3, Proposition 3.1], but c_{0} is not reflexive. However, (A) and (B) may be replaced by the following slightly weaker set of conditions (R^{\prime}):
(C) $\lim _{n} a_{n i}=a_{i}$ exists for each i and $\Sigma_{i} a_{i}$ converges, and
(D) $\Sigma_{i} a_{n i} \nrightarrow \Sigma_{i} a_{i}$, where (D) means that $\Sigma_{i} a_{n i}$ exists for each n and the sequence ($\Sigma_{i} a_{n i}$) either diverges or converges to a limit different from $\Sigma_{i} a_{i}$.

Theorem 3 together with the proof given above remain valid if the condition (R) is replaced by the condition $\left(R^{\prime}\right)=(C)+(D)$. Thus amended, Theorem 3 includes the theorems of Nishiura and Waterman [5] and Waterman [8].
(3) A variant of the proof of Theorem 2 may be based on Remark (1) and Theorem 3, as follows: From a sequence $\left(x_{i}\right)$ in U_{X} extract a subsequence (e_{i}) and form the space F as in Theorem 2; by R-ergodicity and Remark (1), an R-matrix ($a_{n i}$) exists such that $\Sigma_{i} a_{n i} e_{i} \rightarrow$ in F. Using an argument similar to that of $\left[1\right.$, Proposition 3], one obtains a subsequence $\left(y_{i}\right)$ of $\left(e_{i}\right)$ and an R-matrix ($b_{n i}$) for which $\Sigma_{i} b_{n i} y_{i} \rightarrow$ in X. By Theorem 3, X is reflexive; since X fr Y was arbitrary, Y is super-reflexive.

REFERENCES

1. A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1973/74), 294-299.
2. ——, Sur quelques conditions équivalentes à la super-réflexivité dans les espaces de Banach, C. R. Acad. Sci. Paris Sér A-B 275 (1972), A993-A994. MR 47 \#7389.
3. A. Brunel and L. Sucheston, On J-convexity and some ergodic super-properties of Banach spaces, Trans. Amer. Math. Soc. (to appear).
4. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 \#8302.
5. T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57. MR 27 \#5107.
6. A. Pelczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces," Studia Math. 21 (1961/62), 371-374. MR 26 \#4156.
7. I. Singer, Bases in Banach spaces. I, Die Grundlehren der math. Wissenschaften, Band 154, Springer-Verlag, Berlin and New York, 1970.
8. D. Waterman, Reflexivity and summability. II, Studia Marh. 32 (1969), 6163. MR 39 \#7399.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PARIS VI, 9 QUAI ST. BERNARD, 75005, PARIS, FRANCE (Current address of A. Brunel)

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210 (Current address of L. Sucheston)

Current address (H. Fong): Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

