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A WEIGHTED NORM INEQUALITY FOR
VILENKIN-FOURIER SERIES
JOHN A. GOSSELIN

ABSTRACT. Various operators related to the Hardy-Littlewood maxi-
mal function have been shown to satisfy a strong type (p, p) condition,
l<p<oo, for weighted L? spaces providing the weight function satisfies
the Ap condition of B. Muckenhoupt. In particular this result for the maxi-
mal partial sum operator for trigonometric series was established by R.
Hunt and W. S. Young. In this note a result similar to that of Hunt and
Young is established for Vilenkin-Fourier series, which include Walsh

series as a special case,

In a recent paper [5], R. Hunt and W. Young established that the maxi-
mal partial sum operator for the trigonometric system is a bounded operator
on the weighted L? spaces, p > 1, providing the weight function satisfies
the Ap condition introduced by B. Muckenhoupt [6]. In this note we establish
a similar result for the Vilenkin systems which include the Walsh system as
a special case. This proof follows closely that in [S] but avoids several
technical problems encountered in the trigonometric system due to the dis-
crete nature of the underlying group G. In particular, our proof is based on
a joint distribution inequality similar to those in [1] and [2].

We assume the reader is familiar with the description and notation of
Vilenkin systems (G, X) as discussed in [4]. In particular, we still require
that X have a bounded subgroup structure. In the context of Vilenkin sys-
tems, a nonnegative weight function v(x) satisfies the Ap condition, p > 1,
if there exists a constant B such that

(;A(w)“l fw v(x)dp(x)) (,‘(w)—l fwv(x)—l/(P-l)d#(x)>p-l <B

for all cosets w of the fundamental sequence of subgroups {G_}. Using [3],
it is easy to check that each of the following consequences of the Ap con-
dition remained valid in the context of Vilenkin systems:
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(i) ¥ v(x) satisfies the Ap condition with p > 1, then there exists r,
1 <r < p, such that v(x) satisfies the A(p /9 condition.

(ii) Given a measurable set E and a coset w with p(E N w) < € p(w),
there exist positive constants C and 8, independent of E and w, such that
#v(E N w)< Cespv (w) where pu(F) = fF v(x)du(x) for any measurable set F.

(iii) Let Hf(x) = supxew(p.(co)'lfwlf(t)ldp(t)) for any integrable f. Then
if f€ LP(G), p > 1, and v(x) satisfies the Ap condition, there exists a
constant Cp independent of { such that

fG Hf (%) Pu(%)du(x) < Cz IG |/ ()|P du(x).

It should be pointed out that the validity of these consequences depends
upon the bounded subgroup structure of X.

Let S_f(x) denote the nth partial sum of the Vilenkin-Fourier series of
an integrable f, and let Mf(x) = supn|5n f(x)|. We wish to show that if v(x)

satisfies the Ap condition, p > 1, then f € L?(G) implies

Jo Mo < B [ 172l

with C » independent of f. Following [4] we replace Sn f(x) by the modified
nth partial sum operator

S¥f(x) = x, (S (/% M=) = (f * D¥)x),

where D: denotes the modified nth Dirichlet kernel and * denotes convolu-
tion over G. Setting M*/(x) = supn|5: f(x)|, we will show that

W J, (7P o) < €8 [ 11 Pk 0.

For p > 1, let
1/p
Hp/(x) = il:z(u(w)'l fw |/(t)|pdu(t)) = (Hllflp(x))l/p.

Following Hunt and Young, we will establish the distributional inequality
(2)  pix €G: M* f(x) > 4\, H {(x) <yA < COp fx € G: M¥f(x) > A}

for y <y, where C(y) — 0 as y — 0 and r is given in the first consequence
of the Ap condition. To see that (2) implies (1), the reader is referred to

(51

To establish (2) we first note that the set {x € G: M*f(x) > A} is a count-

able union of disjoint cosets @ This follows from the fact that if m, <

k
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* .
n< My 1 S" [(x) is constant on cosets of G Furthermore, we may

k+1°
assume each ©; is maximal in the following sense: If W =X+ G,, then
there exists a point z € w’}'.‘: x + G, _, such that M*/(z].) <A. Thus it suf-

fices to prove that for each w;
(3) plr € M*f(x) > 4\, H {(x) <yA} < Cyp (o)

fory < Yo Let [ = /lm,..(x) + /IG \w;(x) = fl(x) + /z(x) where IE denotes the
j
characteristic function of a measurable set E. We recall from [4] that for

p>1

) Jo W 1@Pdu) < €8 [ 17 Pdu).

Ve may assume there exists u, € @, with H_ /(u,.) <yA. Then

ulx €o: M/, (x) > M < AT fG (M*f,(x))"du()
©) AT [ 1, d) < CA D f,w) < ACTY o)

w,
]

since /,t(w’;) < Ay(wi) follows immediately from the assumption on the sub-

group structure of X. We now show that

x€w: M*f(x) > 4\, H f(x) <yA}C ix €w; M*f () > A}

for y <y, Recall from [4] that if n = ¥ m

a
s=0 s 's?

oo as‘l 0o
DX =2 D (Dx, s< > X (x> =20
s s s s=0 s’

s=0 =0 s

where D (x) = msIG's(x). For x € ®, and any n = b 0%s™ S:/Z(x)'_“

S = s?
s

S: /z(zj). To see this let "1("";‘) = Ef;gasms and nz(w’,) =n- "l(wj)‘ Then
* * * * *
UWAGE Snl(w].)fz(x) + Snz(w].)fz(x) =, *D"l(“’j))(x) +(f, *D"z(“’,'))(x)'

Now f, *D:Z(wj)= 0 since D:Z(wj)(x) has support in G, _;. Also fy *

*
nl(“’

D ) is constant on cosets of Gk and in particular on @ Thus

1

j
S:/z(x) = S: /2(2,')‘ Now for x € @; and any n,
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IS%7,(0) = $%7(2 )| = IS5/ (= )] = |(f, * D))=

!f* ho e, ,(z- z)d#(t)l
W, s=0 s*“s
1

IN

'f 1, E ®, o lz- t)dy(t)l

s=k-1

o e, .(zj-z)dy(t>|
(0] S S

k-2

< fw"f l7(8)] (z asms>d#(t) + |S:2(wi)f(zj)|
7

s=0

<my_y fw* 1£(D)|duls) +‘M*/(z].)
j
<u@D™H [ 1fD1ded + M1 (=)
i

< HI/(”;') + M*f(zj) <(y+ DA

It now follows that M*/z(x) < M*/(zj) +Aly + 1)<A(y + 2). Thus for x € @)
MY () < MY, () + MY7,(2) < M7 () + M2 + y).

Hence if M/(x)> 4M, it follows that M'f,(x)>X if y <y < 1. Then for
)’ S yo’

plx €w;: M*f(x) > 4), H f(x) <yAb <pix €wj M*fl(x) >Al< Cyf#(coj)

by (5). Using the second consequence of the Ap condition, we obtain

plx €o M*f(x) > 4\, H f(x) < yA} < C(y')sﬂv(wj).
Thus (2) is established and the proof is complete.
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