A NOTE ON JONES' FUNCTION κ

JOHN ROSASCO

ABSTRACT. For each point x of a continuum M, F. B. Jones [5, Theorem 2] defines K(x) to be the closed set consisting of all points y of M such that M is not aposyndetic at x with respect to y. Suppose M is a plane continuum and for any positive real number ϵ there are at most a finite number of complementary domains of M of diameter greater than ϵ . In this paper it is proved that for each point x of M, the set K(x) is connected.

A continuum M (nondegenerate metric space that is compact and connected) is said to be *aposyndetic* at a point p of M with respect to a point q of M if there exist an open set W and a continuum H in M such that $p \in W \subset H \subset M - \{q\}$.

Throughout this paper S is the set of points of a simple closed surface (2-sphere).

Definition. Let M be a continuum in S and let x and y be distinct points of M. The set S - M is said to be *folded* around x with respect to y if there exist two monotone descending sequences of circular regions U_1, U_2, U_3, \cdots and V_1, V_2, V_3, \cdots in S centered on and converging to x and y respectively such that $\operatorname{Cl} U_1 \cap \operatorname{Cl} V_1 = \emptyset$ (Cl U_1 is the closure of U_1), and there exists a sequence of mutually exclusive sets X_1, X_2, X_3 , \cdots in S - M having the following properties. For each positive integer *i*, the set X_i is the union of two intersecting arc-segments (open arcs) I_i and T_i such that

(1) $I_i \cap T_i$ is connected,

(2) I_i is contained in Bd U_i (Bd U_i is the boundary of U_i) and has endpoints a_i and b_j in M,

(3) the sets Cl U_{i+1} and $(a_i$ -component of $M - V_i$) are disjoint,

Presented to the Society, November 23, 1974; received by the editors February 17, 1974.

AMS (MOS) subject classifications (1970). Primary 54F15, 54F20, 54A05; Secondary 54F25.

Key words and phrases. Jones' function K, aposyndesis, folded complementary domain, nonlocally connected plane continua.

JOHN ROSASCO

(4) T_i is contained in $S - Cl(V_i \cup U_{i+1})$ and has two distinct endpoints in Bd V_i .

(5) $T_i \cup \text{Bd } V_i$ contains a simple closed curve S_i that separates a_i from b_i in S.

Theorem. If M is a continuum in S and for any positive real number ϵ there are at most a finite number of complementary domains of diameter greater than ϵ , then for each point x of M, the set K(x) is connected.

Proof. Assume K(x) is not connected. Let y be a point of K(x) that does not belong to the x-component of K(x). There exists an open disk R such that y belongs to R, the disk Cl R is contained in $S - \{x\}$, and M is aposyndetic at x with respect to each point of $M \cap Bd R$ [6, Theorem 49, p. 17 and Theorem 13, p. 170].

Since M is not aposyndetic at x with respect to y, S - M is folded around x with respect to y [4, Theorem 2]. Let $U_1, U_2, U_3, \dots, V_1, V_2,$ V_3, \dots , and X_1, X_2, X_3, \dots be the sequences, as described in the definition, which indicate that S - M is folded around x with respect to y. Assume without loss of generality that Cl $U_1 \cap \text{Cl } R = \emptyset$ and Cl $V_1 \subset R$.

For each positive integer n, let A_n and B_n denote the a_n -component and the b_n -component of M - R respectively. According to [1, Lemma and the third paragraph in the proof of Theorem 1], we can assume without loss of generality that there exist disjoint arc-segments C and E in Bd R such that for each n, A_n meets both C and E and B_n meets both C and E. For each n, let c_n and e_n be points of $A_n \cap C$ and $A_n \cap E$ respectively. Assume without loss of generality that for each n, A_{n+1} separates A_n from A_{n+2} in S - R [6, Theorem 28, p. 156]. For each n, since the arc-segment I_n is contained in S - M, B_{n+1} also separates A_n from A_{n+2} in S - R.

The sequence c_1, c_2, c_3, \cdots converges to a point v_1 of $M \cap Cl C$ and e_1, e_2, e_3, \cdots converges to a point v_2 of $M \cap Cl E$. The points v_1 and v_2 are distinct; for otherwise, it would follow that M is not aposyndetic at x with respect to v_1 [1, the fourth paragraph in the proof of Theorem 1].

Since M is aposyndetic at x with respect to each point of Bd R, there exist subcontinua H_1 and H_2 of M and circular regions G_1 and G_2 such that Cl $G_1 \cap$ Cl $G_2 = \emptyset$ and such that for n = 1 and n = 2, the region G_n contains v_n , $H_n \cap$ Cl $G_n = \emptyset$, and the point x is in the interior of H_n relative to M. There is a circular region W that contains x such that Cl $W \cap$ Cl $(G_1 \cup G_2) = \emptyset$ and $W \cap M$ is contained in $H_1 \cap H_2$.

Assume without loss of generality that Cl C is in G_1 , Cl E is in G_2 ,

502

and Cl U_1 is in W. Let $\epsilon = \text{dist}[W, R]$. Since there are at most a finite number of complementary domains of diameter greater than ϵ , there exist integers m and n such that T_m and T_n belong to the same complementary domain of M.

Let T'_m be the component of $T_m - R$ that contains $T_m \cap I_m$ and let T'_n be the component of $T_n - R$ that contains $T_n \cap I_n$. Since $A_m \cup B_m \cup C$ $\cup E$ separates I_m from R in S, we know that T'_m intersects $(G_1 \cup G_2)$. Note also that T'_m intersects both G_1 and G_2 , since otherwise the union of T'_m and a component of $Bd(G_1 \cup G_2)$ would separate a_m from b_m in S [6, Theorem 32, p. 181], and this would contradict the existence of H_1 and H_2 . Similarly T'_n intersects both G_1 and G_2 .

Since T'_m and T'_n belong to the same complementary domain of M, there is an arc A in S - M that intersects both T'_m and T'_n . Let $K = T'_m \cup T'_n \cup A \cup Bd G_1$ and let $H = T'_m \cup T'_n \cup A \cup Bd G_2$. The set $K \cup H$ separates a_m from b_m in S [6, Theorem 32, p. 181]. Since $K \cap H$ is connected, we can assume without loss of generality that K separates a_m from b_m in S[6, Theorem 20, p. 173]. Since H_1 contains $\{a_m, b_m\}$ and misses K, this contradicts the fact that H_1 is a continuum. It follows that K(x) must be connected.

As a consequence of this theorem, we have the following result announced by C. L. Hagopian in [3].

Corollary. K(x) is connected for each point x of a plane continuum that has only finitely many complementary domains.

Continua that satisfy the hypothesis of our theorem are called E-continua by G. T. Whyburn. In [7, Theorem 4.4, p. 113] several conditions are given that characterize local connectivity in these spaces. It is proved in [2] that semi-aposyndetic E-continua are arcwise connected.

Example. The set K(x) may fail to be connected for a point x of a plane continuum that is not an *E*-continuum. To see this, let C be the Cantor discontinuum and define M to be the quotient space

$$C \times [0, 1]/C \times \{0, 1\}.$$

Let y be the separating point of M. Then for each point x of $M - \{y\}$, the set $K(x) = \{x, y\}$.

REFERENCES

1. C. L. Hagopian, A cut point theorem for plane continua, Duke Math. J. 38 (1971), 509-512. MR 44 #2204.

JOHN ROSASCO

2. C. L. Hagopian, Arcwise connectivity of semi-aposyndetic plane continua, Pacific J. Math. 37 (1971), 683-686.

3. ____, Concerning Jones's function K, Notices Amer. Math. Soc. 19 (1972), A-779. Abstract #698-G2.

4. F. B. Jones, A characterization of a semi-locally-connected plane continuum, Bull. Amer. Math. Soc. 53 (1947), 170-175. MR 8, 397.

5. _____, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606.

6. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 # 709.

7. G. T. Whyburn, *Analytic topology*, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819

Current address: 6460 18th Avenue, Sacramento, California 95820