A NOTE ON JONES' FUNCTION K

JOHN ROSASCO

ABSTRACT. For each point x of a continuum M, F. B. Jones [5, Theorem 2] defines $K(x)$ to be the closed set consisting of all points y of M such that M is not aposyndetic at x with respect to y. Suppose M is a plane continuum and for any positive real number ϵ there are at most a finite number of complementary domains of M of diameter greater than ϵ. In this paper it is proved that for each point x of M, the set $K(x)$ is connected.

A continuum M (nondegenerate metric space that is compact and connected) is said to be aposyndetic at a point p of M with respect to a point q of M if there exist an open set W and a continuum H in M such that $p \in W \subset H \subset M-\{q\}$.

Throughout this paper S is the set of points of a simple closed surface (2-sphere).

Definition. Let M be a continuum in S and let x and y be distinct points of M. The set $S-M$ is said to be folded around x with respect to y if there exist two monotone descending sequences of circular regions $U_{1}, U_{2}, U_{3}, \cdots$ and $V_{1}, V_{2}, V_{3}, \cdots$ in S centered on and converging to x and y respectively such that $\mathrm{Cl} U_{1} \cap \mathrm{Cl} V_{1}=\varnothing\left(\mathrm{Cl} U_{1}\right.$ is the closure of U_{1}), and there exists a sequence of mutually exclusive sets X_{1}, X_{2}, X_{3}, \ldots in $S-M$ having the following properties. For each positive integer i, the set X_{i} is the union of two intersecting arc-segments (open arcs) I_{i} and T_{i} such that
(1) $I_{i} \cap T_{i}$ is connected,
(2) I_{i} is contained in $\mathrm{Bd} U_{i}\left(\operatorname{Bd} U_{i}\right.$ is the boundary of $\left.U_{i}\right)$ and has endpoints a_{i} and b_{i} in M,
(3) the sets $\mathrm{Cl} U_{i+1}$ and (a_{i}-component of $M-V_{i}$) are disjoint,

[^0](4) T_{i} is contained in $S-\mathrm{Cl}\left(V_{i} \cup U_{i+1}\right)$ and has two distinct endpoints in $\mathrm{Bd} V_{i}$,
(5) $T_{i} \cup \mathrm{Bd} V_{i}$ contains a simple closed curve S_{i} that separates a_{i} from b_{i} in S.

Theorem. If M is a continuum in S and for any positive real number ϵ there are at most a finite number of complementary domains of diameter greater than ϵ, then for each point x of M, the set $K(x)$ is connected.

Proof. Assume $K(x)$ is not connected. Let y be a point of $K(x)$ that does not belong to the x-component of $K(x)$. There exists an open disk R such that y belongs to R, the disk $C l R$ is contained in $S-\{x\}$, and M is aposyndetic at x with respect to each point of $M \cap \operatorname{Bd} R[6$, Theorem 49, p. 17 and Theorem 13, p. 170].

Since M is not aposyndetic at x with respect to $y, S-M$ is folded around x with respect to y [4, Theorem 2]. Let $U_{1}, U_{2}, U_{3}, \ldots, V_{1}, V_{2}$, V_{3}, \cdots, and $X_{1}, X_{2}, X_{3}, \cdots$ be the sequences, as described in the definition, which indicate that $S-M$ is folded around x with respect to y. Assume without loss of generality that $\mathrm{Cl} U_{1} \cap \mathrm{Cl} R=\varnothing$ and $\mathrm{Cl} V_{1} \subset R$.

For each positive integer n, let A_{n} and B_{n} denote the a_{n}-component and the b_{n}-component of $M-R$ respectively. According to [1, Lemma and the third paragraph in the proof of Theorem 1], we can assume without loss of generality that there exist disjoint arc-segments C and E in $\operatorname{Bd} R$ such that for each n, A_{n} meets both C and E and B_{n} meets both C and E. For each n, let c_{n} and e_{n} be points of $A_{n} \cap C$ and $A_{n} \cap E$ respectively. Assume without loss of generality that for each n, A_{n+1} separates A_{n} from A_{n+2} in $S-R$ [6, Theorem 28, p. 156]. For each n, since the arc-segment I_{n} is contained in $S-M, B_{n+1}$ also separates A_{n} from A_{n+2} in $S-R$.

The sequence $c_{1}, c_{2}, c_{3}, \ldots$ converges to a point v_{1} of $M \cap \mathrm{ClC}$ and $e_{1}, e_{2}, e_{3}, \cdots$ converges to a point v_{2} of $M \cap \mathrm{Cl} E$. The points v_{1} and v_{2} are distinct; for otherwise, it would follow that M is not aposyndetic at x with respect to v_{1} [1, the fourth paragraph in the proof of Theorem 1].

Since M is aposyndetic at x with respect to each point of $\operatorname{Bd} R$, there exist subcontinua H_{1} and H_{2} of M and circular regions G_{1} and G_{2} such that $\mathrm{Cl} G_{1} \cap \mathrm{Cl} G_{2}=\varnothing$ and such that for $n=1$ and $n=2$, the region G_{n} contains $v_{n}, H_{n} \cap \mathrm{Cl} G_{n}=\varnothing$, and the point x is in the interior of H_{n} relative to M. There is a circular region W that contains x such that $\mathrm{Cl} W \cap \mathrm{Cl}\left(G_{1} \cup G_{2}\right)=\varnothing$ and $W \cap M$ is contained in $H_{1} \cap H_{2}$.

Assume without loss of generality that ClC is in $G_{1}, \mathrm{Cl} E$ is in G_{2},
and $\mathrm{Cl} U_{1}$ is in W. Let $\epsilon=\operatorname{dist}[W, R]$. Since there are at most a finite number of complementary domains of diameter greater than ϵ, there exist integers m and n such that T_{m} and T_{n} belong to the same complementary domain of M.

Let T_{m}^{\prime} be the component of $T_{m}-R$ that contains $T_{m} \cap I_{m}$ and let T_{n}^{\prime} be the component of $T_{n}-R$ that contains $T_{n} \cap I_{n}$. Since $A_{m} \cup B_{m} \cup C$ $\cup E$ separates I_{m} from R in S, we know that T_{m}^{\prime} intersects ($G_{1} \cup G_{2}$). Note also that T_{m}^{\prime} intersects both G_{1} and G_{2}, since otherwise the union of T_{m}^{\prime} and a component of $\operatorname{Bd}\left(G_{1} \cup G_{2}\right)$ would separate a_{m} from b_{m} in S [6, Theorem 32, p. 181], and this would contradict the existence of H_{1} and H_{2}. Similarly T_{n}^{\prime} intersects both G_{1} and G_{2}.

Since T_{m}^{\prime} and T_{n}^{\prime} belong to the same complementary domain of M, there is an $\operatorname{arc} A$ in $S-M$ that intersects both T_{m}^{\prime} and T_{n}^{\prime}. Let $K=T_{m}^{\prime} \cup T_{n}^{\prime} \cup$ $A \cup \operatorname{Bd} G_{1}$ and let $H=T_{m}^{\prime} \cup T_{n}^{\prime} \cup A \cup \operatorname{Bd} G_{2}$. The set $K \cup H$ separates a_{m} from b_{m} in S [6, Theorem 32, p. 181]. Since $K \cap H$ is connected, we can assume without loss of generality that K separates a_{m} from b_{m} in S [6, Theorem 20, p. 173]. Since H_{1} contains $\left\{a_{m}, b_{m}\right\}$ and misses K, this contradicts the fact that H_{1} is a continuum. It follows that $K(x)$ must be connected.

As a consequence of this theorem, we have the following result announced by C. L. Hagopian in [3].

Corollary. $K(x)$ is connected for each point x of a plane continuum that has only finitely many complementary domains.

Continua that satisfy the hypothesis of our theorem are called E-continua by G. T. Whyburn. In [7, Theorem 4.4, p. 113] several conditions are given that characterize local connectivity in these spaces. It is proved in [2] that semi-aposyndetic E-continua are arcwise connected.

Example. The set $K(x)$ may fail to be connected for a point x of a plane continuum that is not an E-continuum. To see this, let C be the Cantor discontinuum and define M to be the quotient space

$$
C \times[0,1] / C \times\{0,1\}
$$

Let y be the separating point of M. Then for each point x of $M-\{y\}$, the set $K(x)=\{x, y\}$.

REFERENCES

1. C. L. Hagopian, A cut point theorem for plane continua, Duke Math. J. 38 (1971), 509-512. MR 44 \# 2204.
2. C. L. Hagopian, Arcwise connectivity of semi-aposyndetic plane continua, Pacific J. Math. 37 (1971), 683-686.
3. -, Concerning Jones's function K, Notices Amer. Math. Soc. 19 (1972), A-779. Abstract \#698-G2.
4. F. B. Jones, A characterization of a semi-locally-connected plane continuum, Bull. Amer. Math. Soc. 53 (1947), 170-175. MR 8, 397.
5. ——, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606.
6. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 \# 709.
7. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819

Current address: 6460 18th Avenue, Sacramento, California 95820

[^0]: Presented to the Society, November 23, 1974; received by the editors February 17, 1974.

 AMS (MOS) subject classifications (1970). Primary 54F 15, 54F 20, 54A05; Secondary 54F 25.

 Key words and phrases. Jones' function K, aposyndesis, folded complementary domain, nonlocally connected plane continua.

