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EXISTENCE THEOREMS FOR URYSOHN’S INTEGRAL EQUATION

M. JOSHI

ABSTRACT. The theory of abstract Hammerstein operators is applied to
obtain existence theorems for Urysohn’s integral equation.

Urysohn’s integral equation is of the form
(%) u(s) + fu (s, t, u(£))dt =0.

Usually one assumes that { is a subset of R”, and that ®(s, ¢, u) is
a function of three variables s, t €, u € R, satisfying the so-called Cara-
théodory conditions. Urysohn’s equation has been discussed by Urysohn [6],
Kolomy [4], Krasnosel’skii [5] and others. Attempts have been made to apply
the theory of monotone operators to get existence theorems for (*). In this
paper we apply the theory of abstract Hammerstein operators to obtain exis-
tence theorems for (*) with rather simple conditions on the function ®.

We define a linear operator A: L%(Q x Q) =L2%(Q x Q) with range in
L2(Q) and a nonlinear operator F: L2(Q) —L2%(Q x Q) as follows:

(1) LAxl(s) = f o us, dt,

2 [Ful(s, 1) = Os, 1, u(2)).

In all our considerations in this paper, ) will be a set of finite measure in
R™ and

3) LYQ) - {u: [ 1o <w},

4) LAQ x Q) - {u: [ s, 0] 2aeas < w}.

Observe that L%(f) is a closed subspace of L2(Q x Q).

Lemma 1. A is a continuous linear map from L%(Q x Q) to LAQ x Q)
with range in L2(Q).

One of the hypotheses of the existence theorem is the compactness of

the operator AF. In the following lemmas conditions are given which assure this.
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Lemma 2. If ® satisfies the Carathéodory conditions and

) |®(s, t, w)| <als, )+ bls, |,

a be LAQxQ), b(s,)>0, s,te€Q, u€R,
then F is a continuous bounded map from L*Q) to L*(Q x Q).

Now we define an operator U: L2(Q) —L2%(Q) by
(©) [Wal(s) = [ @s, 1, ule)ar

Obviously U = AF. The operator U is generally called Urysohn’s integral
operator.

Lemma 3. Under the conditions of Lemma 2 the Urysobn’s operator U
is a continuous and compact mapping from L%(Q) to L*Q).

We shall make use of the following theorem which is a slight variation
of Amann’s theorem [1].

Theorem 1 (Amann). Let X be an arbitrary Banach space and A: X
— X* be an angle-bounded map with constant a> 0. Let Y be a closed sub-
space of X* which contains the range of A. Let F: Y — X be continuous,

bounded and assume that there exists po > 0 such that for all u € R(A)

©) (u, Fu)>-(1+ad)~ Y A| =Y u|?
where ||u| > p,,.
If the composite operator AF is compact, then the Hammerstein equation

(%) u+ AFu=0

has a solution u in Y such that |u| < Po-
We are now in a position to state and prove our existence theorem.

Theorem 2. Assume ®(s, t, u) satisfies the Carathéodory condition and
that the operators A, F are defined as in (1), (2) and the map AF from
LAQ) to LAQ) is compact. Also assume that suplu|<a|(l>(s, t, u)| is in
LYQ), where 0> 0 is such that )

(8 ud(s, t, u) > —cls, Dlu|? for |u| >0,

c € L= for some 7<2c(s, )20 for s, 2 €Q.
If po is such that

©) aalo)p; 2 + |elll@l”2p57% < 1

then the Urysohn's integral equation
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(%) u(s) + fﬂ (s, ¢, u())dt = 0

has a solution u in LHQ) such that ||u| < po- Here a(o) denotes the L!
norm of sup|u|<r|(1)(s, t, w)|, |lc|| the L2/Q2=1) porm of ¢ (the L™ norm of
cif r=2), |lu||l the L? norm of u.

Proof. The assertion will follow from Theorem 1. We set X = L2(Q x Q)
and Y = L2(Q). Then (*) is equivalent to the operator equation

(%) u+ AFu =0

where A and F are as defined in (1) and (2) respectively. By Lemma 1, A is
a linear bounded operator from X to X* with range contained in Y. And
similarly, by Lemma 2, F is a continuous bounded operator from Y to X*

Also by assumption AF is compact as a map from Y to Y. Furthermore we
have

(Au, u) = ff dsdtu(s, t) Jau(s, 7)dr

axqQ

= fn ds (fﬂ u(s, t)dt) <f9 u(s, r)a’r)
= fn ds (fau(s, t)a't)2 >0

which implies that A is monotone as a map from X to X* Also (Au,v) =
(Av, u).

Since A is symmetric and monotone, it follows by [2, p. 1348] that A
is angle-bounded with constant @ = 0. Furthermore, using (8) we have

(@ 'I\"v) = fn ng(S. (s, t, (s, t))dsdt
- J;Ifl:hj(s t)l)o-u(s’ D(s, t, s, 1))dt
* IM={t:lu(s <ot (s, DB(s, tuls, 1))dtds

2= [o folets D12Iets, Dldsds ~o [, [, 180s, 1, ols, Nldids

(2-7)/2
2ol (f, folets: 017/2=7)
- 2 by dd
OJ;IJ;)lsup |®(s, t, v)|dtds

u|50'

> =[lol7llell - oa (o)
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where

a,(o) = fnj;‘lsup |®(s, ¢, v)|dtds

v|$ o
and ||v|| denotes the L2(Q x Q) norm of v. Thus we have
~
(v, Fo)>-|vl?|lc| - oa (o).

For v=u € L2(Q), we have |v| = |Q|2||4||, Fv = Fu,

a,(0) = alo) = J;) J;llsup |®(s, ¢, u)|dtds

u|<0'
and (u, Fu) > - |[u|"|Q|" 2|c|| - oalo), so

(w, Fu/|lu]? > - |9~ loa(@|ul =% + | <1917 Zlul"~ 2.

Here, on the Lh.s., || || refers to the L?(Q x Q) norm, whereas on the right
it refers to the L%(Q) norm. Hence using (9) we get

(ar Yl > <A1 for lull > oy

Since the operators A and F satisfy all the conditions of Theorem 1, it fol-
lows that (**) has a solution # in Y with [lu| <p,. This in turn implies
that (*) has a solution u in L? satisfying ||u| < Po-

Remark 1. (9) is satisfied for all sufficiently large po if either r< 2

or r=2 and |c|||Q| <1. In these two cases (*) has a solution in LZ.

Corollary 1. Assume that (s, t, u) satisfies the Carathéodory conditions

and
| (s, ¢, u)| < als, ) + b(s, tu| for u € R,
10
(10) a, be L™ b(s, 1) >0 for s, t, € Q,
(11) Isl_lol < 1.

Then (%) has a solution u in L%

Proof. (10) gives
lu||®(s, ¢, w)| < |als, D||u| + bls, 1)|u|?

= |u| Alals, D|/|u| + b(s, D) if |u| > p,,.

So we get

u®(s, t, u) > ~|u| H|als, /py+ bls, D] if |u| > p,.

In view of condition (10) the composite operator AF is compact by Lem-
ma 3. The result then follows by Theorem 1, Remark 1, since (11) implies
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that (pg il + 8]l )|R]2 < 1 for all sufficiently large Po-
Remark 2. We note that condition (10) alone is not sufficient to guaran-
tee the existence of solutions, as we see in the following example.
Example. ®(s, ¢, u) = @ + bu. Then in 1-dimensional space X = R!,
(**) is given by

(12) u+a+bu=0 or a+(1+bu=0.

® satisfies the condition (10) but for the existence of solution of (12) for
arbitrary a it is necessary that b # - 1.

Also as a corollary to the above theorem we obtain the following exis-
tence theorem for the integral equation

13) s+ fo Kyls, D00t wlDde + [ Kyls, D02, sz = 0
which contains a sum of Hammerstein integral operators.

Corollary 2. Suppose the kernels K (s, 1) and K,(s, t) are in L=(Q x Q).
Also assume that the functions ® (s, 1), ®,(s, t) satisfy the Carathéodory
conditions and

|®,(t, &) <ae)+ b (Du| for ueR,
a,b el: b (>0 forteQq,
(14)
|®,(s )| < a(t) + b(D)|u| for u €R,

ayb,eL? b,()>0 forteQ

u® (4, u) > —c ()| 2 for |u| > 0,>0,
(15)
u® (2, u) > —c ()|u 2 for |u| > 0,>0,

Cpp €y € LY (=7 for some 7<2,¢,()>0,c,() >0 for t €Q. If p, is a
positive number such that

(16) Lao + qulpaz + c|Q|'/2pB"2 <1
then the integral equation (12) bhas a solution u in L? such that |u| < Por
Here
o =max(o, o)), a=[|K |l lla,ll + 1Kl N, M0l

b=K M2+ 1K I NE 0005 e =Kl el + 1Kl lels
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lla,ll> llaylls 18,1l 16,]l denote the LY morm, |lcyll, lic,ll the L2/(2=7 norm,
llull the L? norm of the respective functions.

Proof. Set ®(s, ¢, u) = Kl(s, t)(I)l(t, u) + Kz(s, t)(I)z(t, u); then
| (s, t, )| = |K1(s, t)H(I)l(t, w)| + |K (s, DI|® (2, 4)|

K N () + 1Kl gay (] + K 18,2 + K, | b, (O]l

So
fo o e 1900 & lasas UKLl + V1o 1
- + KN N8 1+ 1K N850l
=a+ bo
and

uls, t, u) > -|K (s, )|c (D] - |K,(s, e (D)ul”

> -l K e, @ + 1K g (al™ for |u] > o

Defining the operators A, F as in (1), (2), it follows from (14) and Lemma 3
that the map AF is compact. Now the result follows from Theorem 2,

Remark 3. Conditions (14) and (15) are rather simpler than those of
Browder [3] for (12).
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