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CONES OF POTENTIALS

BRUCE CALVERT

ABSTRACT.   We construct a cone of potentials from a T-monotone

operator and use this to give smoothness of supersolutions solving a

minimum problem.

Introduction.  In the different theories of potential there are cones of

"superharmonic" functions.   In considering the essential properties of such

cones, Mokobodzki has defined a cone of potentials, emphasising the reduc-

tion of a function.   This paper relates this notion to the nonlinear potential

theory of the author.   The property (2) of cones of potentials is then ex-

ploited to give regularity of solutions to variational problems, under the

hypotheses of Lewy and Stampacchia [10],

Notation.  Let  (E, <) be an ordered vector space, £     the positive cone

of E, and  C C E     a convex cone.   One says   following Mokobodzki [13]>

that  (C, <) defines a cone of potentials if the following conditions are

satisfied:

(1) For all u and v in C, the set  M(zz - v) = \w in C: w > u - v\ pos-

sesses a minimum for the order < called R(u - v).

(2) One has (u - R(u - v)) £ C tot all u, v £ C.

Let  (W, <) be a vector lattice which is a Banach space, such that the

positive cone is closed.   Let V be a closed reflexive subspace which also is

a sublattice, with dual V  .   One says that the operator A from W to P(V  ),

the set of subsets of V  , is monotone if for u and v in W, such that u — v

is in V, and u   in Au and v   in Av, (u   - v  , u — v) > 0.   A is maximal mono-

tone means it is not properly contained in another monotone operator.   One

says  A: W —> P(V  ) is T-monotone if for u   in Au, v   in Av, and  (u — v)

in V, (u  -v   , (u - v)   ) > 0.   Some examples appear in [l], [2] and [5].   One

says A is strictly T-monotone if equality for some u   and v   implies (u - v)+ =

0.   By the domain  D(B) of B: V —' P(V   ) we mean x such that Bx is non-

Received by the editors September 10, 1973.

AMS (MOS) subject classifications (1970). Primary 47H05; Secondary 31B35,

31C25, 35J60, 47A20.
Key words and phrases.   T-monotone, principle of the lower envelope, cone of

potentials, Holder continuous.

Copyright © 1975, American Mathematical Society

325



326 BRUCE CALVERT

empty.   We say  B: V —» P(V  ) is coercive to mean  (Bu, zz)/||zz|| —> °° as

||zz|| —> oo, and B~    is locally bounded if every / £ V   has a neighbourhood

N such that \x £ V: Bx C\ N is nonempty! is bounded.   For K a closed convex

nonempty subset of V, dif>K- V — P(V  ) is defined by  u    £ dif>Ku it u £ K

and Vf £ K, (u  , u - v) > 0.   By a generalised duality map /, one means that

there is a prescribed strictly increasing continuous function iff from lr £ R:

r > 0} to itself, <A(0) = 0, ip(r) — °° as r — *>, and  /: V — P(V*) is defined

by  ||f   || = i/f||f|| and (v  , v) = ||v   || • ||f|| for v    in /t>.   V is a Banach lattice

means  sup(x, - x) < sup(y, - y) implies ||xl| < ||y]|.   We say the norm is mono-

tonic if  0 < x < y implies ]|x|| < ||y||.   The cone is normal means there is an

equivalent monotonie norm.

Theorem 1. Let V be a vector lattice, which is also a reflexive Banach

space, with closed positive cone H. Suppose V and V are strictly convex.

Suppose  B: V —> V    is maximal monotone, and d £ D(B).   Suppose:

(a) A generalised duality map ] preserves order, V is a Banach lattice,

and B is strictly T-monotone; or

(b) A generalised duality map J is strictly T-monotone, the norm in V

is monotonie, and B is T-monotone.

Then B + dip~,   „   z's maximal monotone, as is B + dip,_H.

Proof.  We use the following result from Calvert [6].

Lemma.   Let X be a reflexive Banach space, X and X   strictly convex.

Suppose } is a generalised duality map and K a closed nonempty convex

subset of X.   Let A; X —> P(X  ) be maximal monotone.   Suppose that for

all À > 0, (/ + À/-1A)-1 K C K.   Then A + diff K  is maximal monotone.

By replacing B in the statement of Theorem 1 by x —> ß(x + d) — d ,

where a   £ B(d), we rnay assume  d = 0 and 0 £ B(0).   By the lemma we have

to show that if u + kj~ 1u* = / > 0, u* £ B(u), A > 0, then u > 0.   We need

the following result from Calvert [7].

Lemma. Suppose X is an ordered Banach space with X strictly convex,

and monotonie norm.   Then x > 0, y > 0 implies (Jx, y) > 0.   If X is also a

Banach lattice then x  1 y implies (Jx, y) = 0.

Assuming (a), since J is order preserving,

(0 - u*, (0 - u) + ) = (ß-l(u - /), (-u) + ) < {J\~Hu% (-u) + ) = 0

by the lemma.   Since B is strictly T-monotone, u > 0.   Assuming (b), the T-
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monotonicity of B gives (/(/ - u), (- u)+)< 0.   Since / > 0, // > 0 by the

lemma.   It follows that (/(/ - u) - Jf, ((/ - u) - /) + ) < 0.   Since / is strictly

T-monotone, u > 0.    Q.E.D.

Theorem 1 gives conditions under which the maximality assumptions of

Theorem 2 are fulfilled. The maximality of ß + d<ß~ , H in Theorem 1 holds

also under

(c) interior D(B) n (H + d) 4 0 .

This follows from Rockafellar [l5]> and where  B is a function from V to V  ,

the result follows from Hartman and Stampacchia [8], and Browder [3].   The

properties (1) and (2) of Theorem 2 are the same as those of Mokobodzki,

for if A: W —> V    is a bounded linear operator then C = \x > 0 in W: Ax > Oj

is a convex cone, and by linearity, it u, v £ C then A(u - v) < Au.   We take

/ = 0.   By linearity, (u - R(u - v)) £ C is the same as AR(u - v) <Au.

Theorem 2.   Let V and W be as above.   Let H be the cone in V.   Suppose

A: W —> P(V  ) is strictly T-monotone, and for c in D(A) the two operators

from V to P(V*),

u —• A(zz + c) + d'fi.j,       u —» A(zz + c) + ¿V_,,,

are maximal monotone.   Suppose u —' A(u + c) is coercive.   Then \u £ W:

u > 0,  3 u  £ Au, u   > 0| satisfies the conditions (I) and (2) of a cone of

potentials:

(1) Suppose u, v £ W, f £ V*, and sup(/, A(u - v), A(0))< Au , i.e.

3 (a - vf £ A(u - v), u   £ Au, 0* e A(0) such that sup(/, (u - vf, 0*) < u*.

Then \w > (u - v)+: 3 w   £ Aw, w   > /!  has a minimum element R(u - v).

(2) 3 (R(u - v)f £ AR(u - v) such that (R(u - v)f < u*, for every  u   £ Au

as in (1), i.e. such that  3 (u - v)   £ A(u - v), and 3 0   £ A(0) satisfying

sup(/, (u - v) , 0 ) < u .

Proof.   From Rockafellar [16] we use

Theorem. Let X be a reflexive Banach space, and let B: X —* P(X )

be maximal monotone. Then B is surjective if and only if B is locally

bounded.

The coercivity of u —* A(u + c) gives coercivity of the two operators

concerned and, hence, their surjectivity.

Proof of (1). This is essentially contained in Lions and Stampacchia

[ll, Theorem 6.2], as well as Lewy and Stampacchia [9, Lemma l.l].

By the theorem above there is uQ in H and uQ in A(uQ + (u - v)*) such
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that for all w  in H, (uQ - f, uQ - w) < 0.   We set  R(u - v) = uQ + (u - v)+.

Then for w in (u - v)+ + H,

(3) (u*Q-f,R(u-v)-w)<0.

This implies uQ> f.

Suppose w > (u - v)+ and there is w   in Aw, w   > /.

(a* - w*  (R(u -v)~ w) + ) < (u*0 - f, (R(u -v)- w) + )

= (u*0 - f, R(u-v)- int(w, R(u - v))) < 0.

Since A is strictly T-monotone, R(u — v) < w.

Proof of (2).  This is indicated by Lewy and Stampacchia [9] in their

remark after Theorem 3.1, proved for the classical case by Lewy and Stam-

pacchia [10, Theorem 2.1], and in a general potential theory by Mokobodzki

[12].

By the theorem above, there exists x in R(u — v) — H and x   in Ax such

that for all y in R(u - v) - H,

(4) (**-a* x-y)<0.

Since  (u - v)  < u , and sup((zz - v), x) < R(u - v),

((u - v)   - x , (u - v - x) + ) < (u  - x , sup(zz - v, x) - x) < 0.

By the strict monotonicity of A, x > a — v.   Since  0  < u , and x+ < R(u - v),

(0*-x, (0-x) + )<(u*-x, x+-x) <0.

By the strict monotonicity of A, x > 0.   Hence  x > (u - v)+ and we may put

x = w in (3) to give («0 - /, R(zz - v) - x) < 0.   By putting  R(zz - i>) = y in

(4) we obtain (x   - u , x - R(u - v)) < 0.   Since u   >f,(j—u  , R(u-v)- x)<

0.   Adding these three inequalities gives

(u. - x , R(u — v) — x) < 0.

Since A is strictly monotone, R(u — v) = x, and since x   < u   by  (4), we have

shown that (2) holds.    Q.E.D.

Corollary 1. Suppose V, W, and A are as in Theorem 2, except A is T-

monotone instead of strictly T-monotone. Suppose that there is a reflexive

Banach space U which is a vector lattice with closed cone containing W as

a dense subspace and as a sublattice, and that the cone in U is normal.

Suppose there exists F: U —• U , strictly T-monotone, demieontinuous and

bounded, and c > 0 implies F(c) > 0. Then the conclusion of Theorem 2

holds if f and Au are in U .
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Proof.   For n a positive integer, A + n~  F  satisfies the conditions of

Theorem 2, where we regard F as an operator from W to V .   Therefore there

is w , and w   in Aw  , such that

*
+ dé w   + n~lFw    3 f.

(u-v)++H    » n      '

n
By coercivity, \w  : n £ Z+\ is bounded in W.   Since Fis bounded, n~   Fw

—• 0 in U .   Suppose a subsequence w , ~ (u - v)+ converges weakly in V

to w - (u - v)+.   For y in D(A + difr,  _   ,t   +H),

((A + dé .       )y - f + n'1 Fw , y - w ) > 0,
(u-v)   +fi " "   *

where we mean that inequality holds for all elements of  (A + difr,       n + +#)y.

Taking limits,

((A +dé .      )y - f, y - w) > 0,
(a-v)    +H

which gives  f £ (A + dür,       .+     u)^.
D ' r (a —f )       +H

J. -fa I jg

Suppose wQ > (u - f) + , w0 in ^"'q, ^0 > /• Since «~ F(zi/0) > 0, z¿/0 +

n~ Fiz/q > /. Consequently, w ->w . Taking the weak limit for the subse-

quence n gives wQ > w. This proves (1) of Theorem 2. We show (2) holds.

We note that for m > n,

* + n~lFw    > w* + m~lFw    > /,W

giving w    >w,so that (w  ,), being an increasing sequence converging

weakly to w in U, is also strongly convergent by normality of the cone.

Since \w  I  is order bounded in U  , it is bounded and, hence, a subsequence

of w i converges weakly in U  to w , say.   Since A restricted to 1^: Aw C u\

is maximal monotone as an operator from U to P(U  ), w   is in Aw.   Taking

limits in w    +72     Fiz;    < zz   + n     Pu cives w   < u  .     Q.E.D.
TZ TZ — ° — ^

Supposing A is monotone, a converse to Theorem 2 would give T-

monotonicity if izz > 0: Azz > 0} were a "cone of potentials".    The next four

results show when izz > 0: Au > 0}  being a cone of potentials is equivalent

to the principle of the lower envelope and when the principle of the lower

envelope is equivalent to T-monotonicity.   We say A: W —» V    satisfies the

principle of the lower envelope if A inf(x, y) > inf(Ax, Ay) and the principle

of the upper envelope if A sup(x, y) < sup(Ax, Ay).

Proposition 1.  Suppose V and W are as above, and A: W —« V    satisfies

the principles of the upper and lower envelopes.   Suppose that for c in W,
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u —• A(c + u) is strictly monotone, demicontinuous, and coercive from V to

V .   Then the conclusion of Theorem 2 holds.

Proof.   One follows the proof of Theorem 2, using the principle of the

upper envelope to prove (1) and the principle of the lower envelope to prove

(2).

Proposition 2.  Suppose V and W are as above, and A : W —• V    is given.

Suppose that for u and v in W and f in V  the set \w > u - v. Aw > f\ has a

minimum.   Then A satisfies the principle of the lower envelope.

Proof.  Given x and y in W, set u — v = inf(x, y) and / = inf(Ax, Ay).

Proposition 3. Suppose V and W are as above, and A: W —» V   satisfies

the principle of the lower envelope.   Suppose k > 0 and for x — y in V,

(Ax - Ay, x - y)> k\\x - y 1|   .   Suppose  u —» A(c + u) is bounded and demi-
gfc

continuous from V to V   for c in W.   Then A is T-monotone.

Proof.   By [4, Proposition 1.4], A satisfies the domination principle.

By [4, Proposition 1.5], if e > 0, (u - v)+ £ V and (/ + eA)u < (/ + eA)v,

then u < v.   By the proof of [4, Proposition 1.1], the modulus contraction

acts with respect to A.   By [4, Proposition 1.2], A is T-monotone.

Proposition 4.  Suppose V and W are as above, and there exists  F: W —'

V , strictly T-monotone and demicontinuous.   Suppose A: W —► V    is T-

monotone, and for c in W, u —► A(u + c) is demicontinuous and coercive from

V to V  .   Then A satisfies the principles of the upper and lower envelopes.

Proof.  One follows the proof of [4, Proposition 1.3], using T-monotoni-

city instead of assuming that the modulus contraction operates.

Theorem 3.   Let M be a compact n-dimensional Riemannian manifold with

nonempty boundary.   Let m £ (1, oo).   Let  W '      be the closure of the Lip-

schitz functions  u: M —> R   in the norm (J"|grad zz|m  + |zz|m)    m , integration

being with respect to the Riemannian measure.   Define A:W        —»IV     *     by

Au = -div(\gtad(u)\m-2 gtad(u)).

Suppose i/r £ W ,m, if/ < 0 on bdy(M), i/f e L°°, and the positive Radon measure

(Ai/f)+ on M - bdy(M) satisfies, for all closed balls B(x, r),

(Aif,) + B(x, r)<Cr"-m+a,        0<a<l.

Then R(é), the minimal element of \w > ú+: Aw > 0\ exists and is Holder

continuous in M - bdy(M).
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Remark.  This result does not give as high an exponent, in the case

TTz = 2, as was obtained by Lewy and Stampacchia [10, Theorem 3.2].   We

note that other regularity results follow from property (2) of a cone of poten-

tials; if (Aé)+ £ Lp (or W-1'*), then ARf/fr) £ Lp (or W~l'p).

Proof.   From Morrey [14] we recall

Theorem 3.52.  Suppose  u £ W ,m[B(x0, R)], 1 < m < n, and for x in

B(xQ,R), 0<r<8=R- \x-x0\,

Jb(x.t-)
grad u\m dx< Lm(r/8)"-m + m^.

Then u £ C   [B(x , r)] for each r < R and

\u(y) - iAx)\ < CL8l-n/m(\y - x\/8V

for  \y - x\ < rS/2, C = C(n, m, fi).

Since A is strictly T-monotone, demicontinuous and coercive, R(é)

exists and by (2) of Theorem 2 satisfies AR(if/)B(x, r) < Cr"~m     .   We

assume m < n, tot otherwise u is Holder continuous anyway.   Take a    =

&m/(n + a) and y = 1 - a/(n + a).   We see that n - ym = n - m + a.    and

(n - m + a)y = n - m + a .   We denote all constants independent of r and u

by C.   Given r small, we take Ç, 0<£<l,£=lon B(x, r), with support in

B(x, ry ) C M - bdy(M), |grad CI < Cr~7.

By (1), R(tfr)< ||<A + ||   x.   We may take continuous functions, < ||<A + II   x

with support in  B(x, r   ), convergent to 0"R(i/j) in W ,m, giving

(AR(é), CmR(<A))<Cr^("-m + a)= Crn-m+a'.

This implies that

j Igrad R(é)\mCm < Crn-m+a' + C j Rd/dC"1 |grad £| |grad R^*'1.

By Young's inequality

J Igrad R(xfj)\mCm < Cr"~m+a' + C J"|Rty)Hgrad Ç\m

< Crn~m+a'  + Crn~^m = 0"-TTz+a'
-

Hence

f Igrad R(é)\m<Crn-m+«'.
J B(x,r)

By Morrey's theorem, R(é) is Holder continuous   of   exponent  a/m =

a/(n + a).    Q.E.D.
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We now give an application of Corollary 1 of Theorem 2.   Suppose M as

above, and for x almost everywhere in M, a  : T   —> T    is a monotone con-

tinuous map from the cotangent to the tangent space at x, satisfying (a (p),
_. x

p)> C.\p\m, \a  (p)\ < C.\p\m~  , and such that in local coordinates the map

x —> a  (p) is measurable for p in R", giving a map a: T  (M) —> T(M).

Define Azz = - div a(du).

CoroUary 2.   Let M, W ,m, 1 < m < n, be as in Theorem 3, A as above,

iff in V/l'm n L°°,é < 0 owbdy M, (Ai/r)+ £ Lp, 1< p~l < mn~\ and p'1 <

1 — m~    + n~    if m < n.   Then R(<ß) exists and is Holder continuous on

M — bdy(M), with constant  (pm - n)/(pn + pm — n).

Proof.  Since p < oo, and  I - p~    > m~    — n~    it m < n, W ,m C L    , and

pi
we apply Corollary 1 of Theorem 2 with U = L    .   As F we may take the

duality map for L   .   This gives, if we set a = m - np~    >0

AR(é)B(x, r) < C||A(y» + ||   prn/p' < C/1'"1^.

By the proof of Theorem 3, R(4i) is Holder continuous with exponent

a/(n + a) = (pm - n)/(pn + pm - n).    Q.E.D.
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