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CONES OF POTENTIALS
BRUCE CALVERT

ABSTRACT. We construct a cone of potentials from a T-monotone
operator and use this to give smoothness of supersolutions solving a

minimum problem.

Introduction. In the different theories of potential there are cones of
‘‘superharmonic’’ functions. In considering the essential properties of such
cones, Mokobodzki has defined a cone of potentials, emphasising the reduc-
tion of a function. This paper relates this notion to the nonlinear potential
theory of the author. The property (2) of cones of potentials is then ex-
ploited to give regularity of solutions to variational problems, under the
hypotheses of Lewy and Stampacchia [10].

Notation. Let (E, <) be an ordered vector space, E * the positive cone
of E, and CCE" a convex cone. One says following Mokobodzki [13],
that (C, <) defines a cone of potentials if the following conditions are
satisfied:

(1) For all  and v in C, the set M(u - v)={w in C: w > u - v} pos-
sesses a minimum for the order < called R(x — v).

(2) One has (u - R(u-v)) € C for all u, v € C.

Let (W, <) be a vector lattice which is a Banach space, such that the
positive cone is closed. Let V be a closed reflexive subspace which also is
a sublattice, with dual V*. One says that the operator A from W to P(V*),
the set of subsets of V*, is monotone if for u and v in W, such that « — v
is in V, and «*in Au and v in Av, (u*— v*, u-v)>0. A is maximal mono-
tone means it is not properly contained in another monotone operator. One
says A: W — P(V*) is T-monotone if for «in Au, AT Ay, and (u - v)+
inV, - -0 > 0. Some examples appear in [1], [2] and [5]. One
says 4 is strictly T-monotone if equality for some u* and v* implies (z - v)* =
0. By the domain D(B) of B: V — P(V*) we mean X such that Bx is non-
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empty. We say B: V — P(V") is coercive to mean (Bu, u)/||u]| — « as

llz]| — o0, and B~!is locally bounded if every f € V* has a neighbourhood
N such that {x € V: Bx N N is nonempty} is bounded. For K a closed convex
nonempty subset of V, 9y : V — P(V*) is defined by »* € oY uif u€ K
and Vv € K, (u*, u—v)> 0. By a generalised duality map J, one means that
there is a prescribed strictly increasing continuous function ¢ from {r € R:
> 0} to itself, Y(0)= 0, Y(r) — o asr — x, and J: V — P(V*) is defined
by "v*" =¢Yv|| and @*, v) = |Iv*| - o]l for v* in Jv. V is a Banach lattice
means sup(x, — x) < sup(y, — y) implies ||x]| < |lyll. We say the norm is mono-
tonic if 0< x <y implies [x|| < |lyll. The cone is normal means there is an

equivalent monotonic norm.

Theorem 1. Let V be a vector lattice, which is also a reflexive Banach
space, with closed positive cone H. Suppose V and v* are strictly convex.
Suppose B: V — V™ is maximal monotone, and d € D(B). Suppose:

(a) A generalised duality map | preserves order, V is a Banach lattice,
and B is strictly T-monotone; or

(b) A generalised duality map | is strictly T-monotone, the norm in V
is monotonic, and B is T-monotone.

Then B + 0y, y is maximal monotone, as is B + Y, _y-

Proof. We use the following result from Calvert [6].

Lemma. Le: X be a reflexive Banach space, X and X* strictly convex.
Suppose ] is a generalised duality map and K a closed nonempty convex
subset of X. Let A: X — P(X*) be maximal monotone. Suppose that for
all x>0, (I +A\]"'A) 'K C K. Then A + 3¢, is maximal monotone.

By replacing B in the statement of Theorem 1 by x — B(x + d) — d*,
where d* € B(d), we may assume 4= 0and 0 € B(0). By the lemma we have
to show that if u + ?\]-lu* =f>0, «* € B(u), A > 0, then u > 0. We need
the following result from Calvert [7].

Lemma. Suppose X is an ordered Banach space with x* strictly convex,
and monotonic norm. Then x >0, y> 0 implies (Jx,y)> 0. If X is also a
Banach lattice then x L y implies (Jx, y) = 0.

Assuming (a), since | is order preserving,

O0=a* 0= =(r Nu=1), )N <A @), ) =0

by the lemma. Since B is strictly T-monotone, z > 0. Assuming (b), the T-
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monotonicity of B gives (J(f — ), (- u)*)< 0. Since f> 0, Jf > 0 by the
lemma. It follows that (J(f — u) - Jf, (f — «) - /)*) < 0. Since ] is strictly
T-monotone, z > 0. Q.E.D.

Theorem 1 gives conditions under which the maximality assumptions of
Theorem 2 are fulfilled. The maximality of B + 0¥, in Theorem 1 holds
also under

(c) interior D(B) N(H+ d)£ & .

This follows from Rockafellar [15], and where B is a function from V to V*,
the result follows from Hartman and Stampacchia [8], and Browder [3]. The
properties (1) and (2) of Theorem 2 are the same as those of Mokobodzki,
for if A: W — V* is a bounded linear operator then C = {x > 0 in W: Ax > 0}
is a convex cone, and by linearity, if z, v € C then A(z — v) < Au. We take
f=0. By linearity, (u - R(u~v)) € C is the same as AR(u - v)< Au.

Theorem 2. Let V and W be as above. Let H be the cone in V. Suppose
A: W — P(V*) is strictly T-monotone, and for c in D(A) the two operators
from V to P(V*),

u —=Au+c)+dpy, u— Alu+c)+dy_y,

are maximal monotone. Suppose u — A(u + c) is coercive. Then {u € W:
u>0, 1%¢ Au, V*Z 0} satisfies the conditions (1) and (2) of a cone of
potentials:

(1) Suppose u, v € W, f € V¥, and sup(f, A(u - v), A(0)) < Au , i.e.
I (u - v)*€ A(u - v), e Au, 0*e A(0) such that sup(f, (u - v)*, 0*) < uF.
Then {w > (u—-v)*: 3w* € Aw, w*> [} has a minimum element R(u - v).

(2) IR - v))* € AR(u - v) such that (R(u - v))*< u*, for every u* € Au
as in (1), i.e. such that 3(u - v)* € A(u - v), and 30% € A(0) satisfying
sup(f, (u - v)*, 0*) < u*.

Proof. From Rockafellar [16] we use

Theorem. Let X be a reflexive Banach space, and let B: X — P(X*)
be maximal monotone. Then B is surjective if and only if B! is locally

bounded.

The coercivity of u — A(u + ¢) gives coercivity of the two operators
concerned and, hence, their surjectivity.

Proof of (1). This is essentially contained in Lions and Stampacchia
[11, Theorem 6.2], as well as Lewy and Stampacchia [9, Lemma 1.1].

By the theorem above there is u, in H and u’g in A(ug+ (u- v)*) such
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that for all w in H, (uz ~fyuy- w)< 0. We set R(u-v)= uy+ (u - v)t,
Then for w in (u — v)* + H,
(3) (ut) -/, Rlu=-v) —w) < 0.
This implies u( > /-
Suppose w > (u — v)* and there is w* in Aw, w*> /.
(ut — ¥ (Ru-v)-—w)*) < (u; 1, (R(z = ) = w)*)
= (u: = f, R(u—v) - inf(w, R(z - v))) < 0.

Since A is strictly T-monotone, R(x — v) < w.

Proof of (2). This is indicated by Lewy and Stampacchia [9] in their
remark after Theorem 3.1, proved for the classical case by Lewy and Stam-
pacchia [10, Theorem 2.1], and in a general potential theory by Mokobodzki
(121

By the theorem above, there exists x in R(x — v) — H and x*in Ax such
that for all y in R(z - v) - H,

(4) (x* - u*, x-1y) <0

Since (u - U)*S u*, and sup((z - v), x) < R(u - v),

(=) = 5% (u=-v-0%) < (= % sup(u-v x) - x) <O.

By the strict monotonicity of A, x > u — v. Since 0*5 «*, and xt < R(u-v),
0*=x* (0-x") < (= %% x* - %) <o0.

By the strict monotonicity of A, x > 0. Hence x > (x - v)* and we may put
x = w in (3) to give (u: —fy R(u—v)—-x)< 0. By putting R(u-v) =1y in
(4) we obtain (x*— u*, % — R(u - v))< 0. Since u*z [y (f - u*, R(u—-v)-x)<
0. Adding these three inequalities gives

(u: - %% Rlu-1) - x) <o.

Since A is strictly monotone, R(x — v) = x, and since x*_<_ u* by (4), we have
shown that (2) holds. Q.E.D.

Corollary 1. Suppose V, W, and A are as in Theorem 2, except A is T-
monotone instead of strictly T-monotone. Suppose that there is a reflexive
Banach space U which is a vector lattice with closed cone containing W as

a dense subspace and as a sublattice, and that the cone in U is normal.

Suppose there exists F: U — U*, strictly T-monotone, demicontinuous and
bounded, and c > 0 implies F(c) > 0. Then the conclusion of Theorem 2
holds if { and Au are in u*.
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.. . -1 . g ..
Proof. For n a positive integer, A + n~ F satisfies the conditions of
*
Theorem 2, where we regard F as an operator from W to V. Therefore there
. * .
isw _,and w  in Aw_, such that
n n n

* -1
w o+ +n Fw 3

4 a¢(u-v) +H “n I
By coercivity, {wn: n € Z* is bounded in W. Since F is bounded, n'len .
—0in U*. Suppose a subsequence W - (u — v)* converges weakly in V

tow— (u-v)t. ForyinDA + a¢(u_u)+ +H)’

(Avoy o Jy=1+ nFu, y-w) >0,

u-v) +
where we mean that inequality holds for all elements of (A + c?x/l(u_v)+ +H)Y-
Taking limits,
((A+9 Yy-f, y-w) >0,
Yoot on” Ly 2

which gives [ € (A + atli(u_v)+ JHY

Suppose wy> (u—-v)t, w’; in Awo, w: >f. Since n'lF(wo)Z 0, w’g +
n- leo >f. Consequently, w,>w . Taking the weak limit for the subse-
quence n' gives w, > w. This proves (1) of Theorem 2. We show (2) holds.

We note that for m > n,

% - *
v 0 Fw > w
m m - m

+mt me >/

giving w_>w , so that (wn,), being an increasing sequence converging
weakly to w in U, is also strongly convergent by normality of the cone.
Since {w | is order bounded in U¥, it is bounded and, hence, a subsequence
of w*, converges weakly in U*to w®, say. Since A restncted to {w: AwC U%}
is max1mal monotone as an operatot from U to P(U ), w*is in Aw. Taking
limits in wn +n len < u*+ n~'Fu gives w § «*. Q.E.D.

Supposing A is monotone, a converse to Theorem 2 would give T-
monotonicity if {z > 0: Au > 0} were a ‘‘cone of potentials’’. The next four
results show when {u > 0: Au > 0} being a cone of potentials is equivalent
to the principle of the lower envelope and when the principle of the lower
envelope is equivalent to T-monotonicity. We say A: W — V* satisfies the
principle of the lower envelope if A inf(x, y) > inf(Ax, Ay) and the principle
of the upper envelope if A sup(x, y) < sup(Ax, Ay).

Proposition 1. Suppose V and W are as above, and A: W — v* satisfies

the principles of the upper and lower envelopes. Suppose that for c in W,
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u — A(c + u) is strictly monotone, demicontinuous, and coercive from V to
* .
V'. Then the conclusion of Theorem 2 holds.

Proof. One follows the proof of Theorem 2, using the principle of the
upper envelope to prove (1) and the principle of the lower envelope to prove

(@).

Proposition 2. Suppose V and W are as above, and A: W — v¥is given.
Suppose that for u and v in W and [ in V¥ the set tw >u-v:Aw>f} has a

minimum. Then A satisfies the principle of the lower envelope.
Proof. Given x and y in W, set u — v = inf(x, y) and [ = inf(Ax, Ay).

Proposition 3. Suppose V and W are as above, and A: W — V* satisfies
the principle of the lower envelope. Suppose k> 0 and for x —y in V,
(Ax — Ay, x — y) > kllx - y'“z. Suppose u — A(c + u) is bounded and demi-

continuous from V to V" for c in W. Then A is T-monotone.

Proof. By [4, Proposition 1.4], A satisfies the domination principle.
By (4, Proposition 1.5], if e > 0, (u- Y eVand (I + ed)u <+ eA)y,
then u < v. By the proof of [4, Proposition 1.1], the modulus contraction

acts with respect to A. By [4, Proposition 1.2], 4 is T-monotone.

Proposition 4. Suppose V and W are as above, and there exists F: W —
V*, strictly T-monotone and demicontinuous. Suppose A: W — v*is T-
monotone, and for ¢ in Wy, u — A(u + c) is demicontinuous and coercive from
Vto V*. Then A satisfies the principles of the upper and lower envelopes.

Proof. One follows the proof of [4, Proposition 1.3}, using T-monotoni-

city instead of assuming that the modulus contraction operates.

Theorem 3. Let M be a compact n-dimensional Riemannian manifold with
nonempty boundary. Let m € (1, ). Let W™ be the closure of the Lip-
schitz functions uz M — R in the norm ([|grad u|™ + |u'|"‘)‘/’" , integration

_ ’
being with respect to the Riemannian measure. Define A: wl/m _ w="1m by

Au = —div(|grad (2)|™ =2 grad ().

Suppose Y € Wl"", Y < 0 on bdy(M), Y € L™, and the positive Radon measure
(AY)* on M — bdy(M) satisfies, for all closed balls B(x, ),

(A¢)+B(x, < c/mmtae 0<ac<l.
Then R(Y), the minimal element of {w > Y *: Aw > O} exists and is Holder
continuous in M — bdy(M).
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Remark. This result does not give as high an exponent, in the case
m = 2, as was obtained by Lewy and Stampacchia [10, Theorem 3.2]. We
note that other regularity results follow from property (2) of a cone of poten-
tials; if (AY)* € L? (or W™ 1), then ARG) € L? (or W™ 1'P).

Proof. From Morrey [14] we recall

Theorem 3.52. Suppose u € Wl’m[B(xo, R), 1< m< n, and for x in

B(xo, R),OSrSS:R—Ix—xoi,

m m n-m+mpu
fB(x,r) |grad u|™ dx < L™(r/6) .

Then u € CZ[B(x )] for each r <R and

01
'u(}') - u(x)l S CLal-n/m(b; - x'/@)/‘
for |y — x| <8/2, C = C(n, m, p).
Since A is strictly T-monotone, demicontinuous and coercive, R()

exists and by (2) of Theorem 2 satisfies A‘R(l/!)B(x, < Cr*™m*e we
assume m < n, for otherwise u is Holder continuous anyway. Take o

amfin+a)andy=1-a/(n+a). We see that n—ym=n-m+a’ and
m-m+)y=n-m+ a'. We denote all constants independent of r and u
by C. Given r small, we take £, 0< { <1, { =1 on B(x, r), with support in
B(x, 7”)C M - bdy(M), |grad ¢| < Cr~7.
By (1), R@) < |&*ll .. We may take continuous functions, < [ +>“L°°’
L
with support in B(x, ), convergent to {"R@Y) in Wl'"', giving
(AR(Y), L™R(Y)) < CrY(n=m+a) _ cpp-mta
This implies that
_[ |grad R(Y)|™¢™ < crr—m*e 4 ¢ f R(Y)¢™ 1 |grad £||grad R()|™ .

By Young’s inequality

[ lgrad R@Y™E™ < cmmme 4 ¢ [ |R@)|™|grad £

< Crn-m+a' L CAYm Crn-"”'a'.

Hence

m n-m+a’
f Ba. |24 RWI™ < Cr .

By Morrey’s theorem, R(i) is Holder continuous of exponent a'/m =
a/(n +a). Q.E.D.
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We now give an application of Corollary 1 of Theorem 2. Suppose M as
above, and for x almost everywhere in M, @_: T: — T, is a monotone con-
tinuous map from the cotangent to the tangent space at x, satisfying (ax(P),
p)>C,lpl™, |ax(P)| < C2|P|m-l, and such that in local coordinates the map
x — a_(p) is measurable for p in R", giving a map a: T*(M) — T(M).

Define Au = — div a(du).

Corollary 2. Let M, W™ 1 < m < n, be as in Theorem 3, A as above,
G in W™ A L™, ¢ < Oonbdy M, (AY)* € L? 1< p~  <mn~!, and p~' <

1

1-m~" + n"l if m<n. Then R(}) exists and is Holder continuous on

M — bdy(M), with constant (pm — n)/(pn + pm — n).

1
Voa! ifm<n,W1’mC L?, and

we apply Corollary 1 of Theorem 2 with U = L?'. As F we may take the

Proof. Since p < oo, and 1-p~! >m”

duality map for L?. This gives, if we set a =m — np~! >0
AR(YB(x, 1) < C[IA(¢)+|| pr"/i" < crmmia,
L

By the proof of Theorem 3, R(¥) is Hslder continuous with exponent

a/(n +a)= (pm — n)/(pn + pm — n). Q.E.D.

REFERENCES

1. H. Brézis and G. Stampacchia, Sur la régularité de la solution d’inéquations
elliptiques, Bull. Soc. Math. France 96 (1968), 153—-180. MR 39 #659.

2. H. Brézis, Problémes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.

3. F. Browder, Nonlinear monotone operators and convex sets in Banach
spaces, Bull. Amer. Math. Soc. 71 (1965), 780—-785. MR 31 #5112,

4. B. Calvert, Potential theoretic properties for monotone operators, Boll. Un.
Mat. Ital. (4) 5 (1972), 473—-489. MR 46 #9812.

5. , On T-accretive operators, Ann. Mat. Pura Appl. (4) 94 (1972), 291—
314. MR 47 #5677.

6. » Maximal monotonicity and m-accretivity of A + B, Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 49 (1970), (1971), 357—363. MR 46 #2501.

7. , Nonlinear equations of evolution, Pacific J. Math. 39 (1971), 293—
350. MR 47 #7531.

8. P. Hartman and G. Stampacchia, On some non-linear elliptic differential-
functional equations, Acta Math. 115 (1966), 271-310. MR 34 #6355.

9. H. Lewy and G. Stampacchia, On the regularity of the solution of a varia-
tional inequality, Comm. Pure Appl. Math. 22 (1969), 153—-188. MR 40 #816.

10. , On the smoothness of superharmonics which solve a minimum prob-

lem, J. Analyse Math. 23 (1970), 227-236. MR 42 #6266.

11. J. Lions and G. Stampacchia, Variational inequalitites, Comm. Pure Appl.
Math. 20 (1967), 493—519. MR 35 #7178.

12. G. Mokobodzki, Cones de potentiels et noyaux subordonnés, Potential
Theory (C.I.M.E., I Ciclo, Stresa, 1969), Edizioni Cremonese, Rome, 1970, pp. 207—
248. MR 43 #551.




CONES OF POTENTIALS 333

13. G. Mokobodzki, Structure des cones de potentiels, Séminaire Bourbaki, 22¢
année, 1969/70, no. 377, Lecture Notes in Math., vol. 180, Springer-Verlag, Berlin,
1971, pp. 239-252.

14. C. Morrey, Multiple integrals in the calculus of variations, Die Grundlehren
der math. Wissenschaften, Band 130, Springer-Verlag, New York, 1966. MR 34
#2380.

15. R. Rockafellar, On the maximality of sums of nonlinear monotone operators,
Trans. Amer, Math Soc. 149 (1970), 75-88. MR 43 #7984."

16. » Local boundedness of nonlinear, monotone operators, Michigan

Math. J. 16 (1969), 297-407. MR 40 #6229.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND, AUCKLAND, NEW
ZEALAND




