NONCONTINUITY OF TOPOLOGICAL ENTROPY OF MAPS OF THE CANTOR SET AND OF THE INTERVAL

LOUIS BLOCK

ABSTRACT. We show that topological entropy, as a map on the space of continuous functions of the Cantor set into itself, is not continuous anywhere. Furthermore, topological entropy, as a map on the space of continuous functions of the interval into itself, is not continuous at any map with finite entropy.

1. Introduction. For a compact topological space S, let $C^0(S, S)$ denote the space of continuous functions of S into itself with the topology of uniform convergence. Let I denote the unit interval [0, 1] and C the Cantor set (the usual middle third Cantor set). For $f \in C^0(S, S)$, let ent(f) denote the topological entropy of f as defined in [1]. (We review the definition in $\S 2$.) ent(f) is a nonnegative real number, or ∞ , which describes (quantitatively) the action of f considered as a discrete dynamical system.

Our main results are the following:

Theorem A. The function ent: $C^0(C, C) \to R \cup \{\infty\}$ is not continuous anywhere.

Theorem B. The function ent: $C^0(I, I) \to R \cup \{\infty\}$ is not continuous at any map f with ent(f) finite.

We note that Theorem B is valid with I replaced by the circle S^1 . (See remarks at the end of $\S 4$.)

Topological entropy has been studied in [4], [5] and [7] in connection with Smale's program [8] for studying the orbit structure of differentiable maps of manifolds. However the definition and basic properties rely only on continuity (see [1]). Thus it seems natural to determine what is true in the continuous case before proceeding to the differentiable case.

There are examples on higher dimensional manifolds (see [6]) to show that entropy is not continuous in the differentiable case. However, for the

Received by the editors April 5, 1974.

AMS (MOS) subject classifications (1970). Primary 54H20; Secondary 58F99. Key words and phrases. Topological entropy, nonwandering set.

circle or the interval the problem is open. In this connection we mention the following. Let $C^1(M, M)$ denote the space of continuously differentiable maps of a compact manifold M into itself with the C^1 topology.

Theorem C. The function ent: $C^1(M, M) \rightarrow R$ is continuous at the identity map of M.

This follows from Proposition 12 of [5].

Finally we remark that positive results on continuity of entropy would have obvious consequences in the theory of bifurcations of differentiable maps. See [2] for some results in this direction.

2. Preliminary definitions and results. We begin by reviewing the definition of topological entropy as defined in [1]. Let X be a compact topological space. For any two open covers \mathcal{C} and \mathcal{B} of X, let $\mathcal{C} \vee \mathcal{B}$ denote $\{A \cap B \mid A \in \mathcal{C} \text{ and } B \in \mathcal{B}\}$. Let $N(\mathcal{C})$ denote the number of sets in a subcover of \mathcal{C} of minimum cardinality.

Let $f \in C^0(X, X)$. For each integer n > 0 let

$$M_n(\mathfrak{A}) = N(\mathfrak{A} \vee f^{-1}(\mathfrak{A}) \vee \cdots \vee f^{-n}(\mathfrak{A})).$$

Here $f^{-1}(\widehat{\mathfrak{A}})$ denotes the open cover $\{f^{-1}(A)|A\in\widehat{\mathfrak{A}}\}$, and f^n is defined inductively by $f^1=f$ and $f^n=f^{n-1}\circ f$ for n>1.

Set

ent
$$(f, \mathcal{C}) = \lim_{n \to \infty} n^{-1} \log M_n(\mathcal{C}).$$

It is easy to show that this limit exists and is finite (see [1]). Finally we define the topological entropy of f by ent(f) = sup ent (f, \mathfrak{A}) where the supremum is taken over all open covers \mathfrak{A} of X.

Next we define the notion of nonwandering set. Let $f \in C^0(X, X)$. A point $x \in X$ is said to be wandering if there is a neighborhood 0 of x such that $f^n(0) \cap 0 = \emptyset$ for each integer n > 0. The set of points which are not wandering is called the nonwandering set and denoted $\Omega(f)$. We remark that $\Omega(f)$ is a closed subset of X and $f(\Omega(f)) \subset \Omega(f)$.

The following proposition is proved by Bowen in [4]. Here X is a compact metric space.

Proposition 1. Let
$$f \in C^0(X, X)$$
. Then $ent(f) = ent(f | \Omega(f))$.

One of the inequalities necessary for Proposition 1 follows immediately from the following basic fact which is proved in [1].

Proposition 2. Let $f \in C^0(X, X)$ and let K be a closed subset of X

such that $f(K) \subset K$. Then ent(f) > ent(f|K).

It follows immediately from the definition that if K is finite and $f \in C^0(K, K)$ then ent (f) = 0. Hence by Proposition 1 we have

Proposition 3. Let $f \in C^0(X, X)$. If $\Omega(f)$ is finite then ent(f) = 0.

From the definition of $\Omega(f)$ it follows that $\Omega(f) \subset \text{Im}(f)$ (the image of f). Hence we have

Proposition 4. Let $f \in C^0(X, X)$. If Im(f) is finite then ent(f) = 0.

3. Proof of Theorem A. We may think of the Cantor set C as the set of infinite sequences (x_1, x_2, \cdots) such that each x_k is 1 or 2. The topology on C is then given by the metric

$$d((x_1, x_2, \dots), (y_1, y_2, \dots)) = \sum_{i=1}^{\infty} (2^{-i}) |x_i - y_i|.$$

(Equivalently we are thinking of C as the infinite product of the set $\{1, 2\}$ with the product topology.)

Let $f \in C^0(C, C)$. We have two cases.

Case 1. ent (f) > 0.

Define a sequence (f_L) of functions in $C^0(C, C)$ as follows. Let

$$f_k(x_1, x_2, \cdots) = (y_1, y_2, \cdots, y_{k-1}, y_k, 1, 1, 1, \cdots)$$

where $f(x_1, x_2, \dots) = (y_1, y_2, \dots)$. In other words f_k is the function which assigns to a sequence (x_1, x_2, \dots) the sequence whose first k terms are the first k terms of $f(x_1, x_2, \dots)$ and whose terms past the kth term are all 1.

Note that the image of the map f_k is a finite set consisting of at most 2^k points. (For example the image of f_2 consists at most of the points $(1,1,1,1,1,\dots),(1,2,1,1,1,\dots),(2,1,1,1,1,\dots),$ and $(2,2,1,1,1,\dots)$.) Hence by Proposition 4, ent $(f_k) = 0$.

It is easy to see that the sequence (f_k) converges uniformly to f. In fact if $\epsilon > 0$, we can choose an integer N large enough to insure that $(\sum_{k=N+1}^{\infty} 2^{-k}) < \epsilon$. Then for $k \ge N$,

$$d(f_{k}(x_{1}, x_{2}, \cdots), f(x_{1}, x_{2}, \cdots)) < \epsilon$$

for any $(x_1, x_2, \dots) \in C$.

Case 2. ent(f) = 0.

Define a sequence (g_k) of functions in $C^0(C, C)$ as follows. Let $f(x_1, x_2, \dots) = (y_1, y_2, \dots)$ and set

$$g_k(x_1, x_2, \cdots) = (y_1, y_2, \cdots, y_{k-1}, y_k, x_{k+2}, x_{k+3}, \cdots).$$

In other words $g_k(x_1, x_2, \dots)$ is the sequence whose first k terms are the same as the first k terms of $f(x_1, x_2, \dots)$, and whose nth term for n > k is x_{n+1} .

As in Case 1, it is clear that (g_n) converges uniformly to f. We conclude the proof by showing that for each integer k > 0, $\operatorname{ent}(g_k) \ge \log(2)$. Fix k > 0.

Let O_1 be the set of sequences (x_1, x_2, \dots) such that $x_{k+1} = 1$. Let O_2 be the set of sequences (x_1, x_2, \dots) such that $x_{k+1} = 2$. Then $\mathcal{C} = \{O_1, O_2\}$ is an open cover of C. We will show that $\operatorname{ent}(g_k, \mathcal{C}) = \log(2)$.

Let
$$x = (x_1, x_2, \dots) \in C$$
. Then

$$\begin{aligned} & x \in O_1 \cap g_k^{-1}(O_1) \iff x_{k+1} = 1 \quad \text{and} \quad x_{k+2} = 1, \\ & x \in O_1 \cap g_k^{-1}(O_2) \iff x_{k+1} = 1 \quad \text{and} \quad x_{k+2} = 2, \\ & x \in O_2 \cap g_k^{-1}(O_1) \iff x_{k+1} = 2 \quad \text{and} \quad x_{k+2} = 1, \\ & x \in O_2 \cap g_k^{-1}(O_2) \iff x_{k+1} = 2 \quad \text{and} \quad x_{k+2} = 2. \end{aligned}$$

Thus the sets $O_1 \cap g_k^{-1}(O_1)$, $O_1 \cap g_k^{-1}(O_2)$, $O_2 \cap g_k^{-1}(O_1)$, and $O_2 \cap g_k^{-1}(O_2)$ are pairwise disjoint nonempty subsets of C. Hence $M_1(g_k, \mathcal{C}) = 4$. It follows in the same way by induction that $M_n(g_k, \mathcal{C}) = 2^{n+1}$ for each integer n > 0. Hence $\operatorname{ent}(g_k, \mathcal{C}) = \log(2)$. This implies that $\operatorname{ent}(g_k) \geq \log(2)$, and completes the proof of Theorem A.

We remark that since the diameter of $(\mathfrak{A} \vee g_k^{-1}(\mathfrak{A}) \vee \cdots \vee g_k^{-n}(\mathfrak{A}))$ approaches zero (as $n \to \infty$), it actually follows that $\operatorname{ent}(g_k) = \log(2)$.

4. Proof of Theorem B. Let K denote any closed interval on the real line. We may form the middle third Cantor subset of K, which we denote by C, and we may identify points in C with sequences whose terms are all 1 or 2, as in $\S 3$.

Let s denote the map in $C^0(C, C)$ defined by $s(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$. s is sometimes called the full 2-shift (see [8] for discussion and further references). We will use the following elementary facts (see [1]).

Proposition 5. ent(s) = log(2).

Proposition 6. If $f \in C^0(X, X)$ for any compact space X, then $ent(f^n) = n \cdot ent(f)$.

We will use the usual metric d on $C^0(I, I)$ which may be defined by

$$d(f, g) = \sup\{|f(x) - g(x)| : x \in I\}.$$

Theorem B. The function ent: $C^0(I, I) \to R \cup \{\infty\}$ is not continuous at any map f with ent(f) finite.

Proof. Let $f \in C^0(I, I)$ with ent(f) finite. Let ent $(f) = \log(K)$. Pick an integer m > 0, such that $2^m > 2K$.

Let x_0 be a fixed point of f. We assume for simplicity that $x_0 \neq 1$. (The proof can be easily modified for the case $x_0 = 1$.)

Let $\epsilon > 0$. $\exists \ \delta > 0$ such that if $|x - x_0| \le \delta$ then $|f(x) - x_0| < \epsilon/2$. We may choose δ so that $\delta < \epsilon/2$ and $x_0 + \delta \le 1$.

We construct a map $g \in C^0(I, I)$ such that $d(f, g) < \epsilon$. We first construct g on the interval $[x_0, x_0 + \delta/2]$ as follows. Let C denote the middle third Cantor subset of the interval $[x_0, x_0 + \delta/2]$. Define g on C by $g = s^m$, where s denotes the full 2-shift as defined above. Note that $g(x_0) = x_0$ and $g(x_0 + \delta/2) = x_0 + \delta/2$ since x_0 is identified with the sequence $(1, 1, 1, \ldots)$ and $x_0 + \delta/2$ is identified with the sequence $(2, 2, 2, \ldots)$. We extend g to the interval $[x_0, x_0 + \delta/2]$ by defining g linearly on each open interval in $[x_0, x_0 + \delta/2] - C$.

Next we extend g to the interval $[x_0, x_0 + \delta]$ by defining g on the interval $[x_0 + \delta/2, x_0 + \delta]$ as follows. Let $g(x_0 + \delta/2) = x_0 + \delta/2$, $g(x_0 + \delta) = f(x_0 + \delta)$, and define g linearly on $[x_0 + \delta/2, x_0 + \delta]$. Finally we extend g to a map in $C^0(I, I)$ by defining g(x) = f(x) for $x \in I - [x_0, x_0 + \delta]$.

Note that

ent
$$(g) > \text{ent}(s^m) = \log(2^m) > \log(2K) = \log(2) + \log(K)$$
.

We must show that for all $x \in I$, $|f(x) - g(x)| < \epsilon$.

If
$$x \in I - [x_0, x_0 + \delta]$$
 then $|f(x) - g(x)| = 0$. If $x \in [x_0, x_0 + \delta]$ then $|g(x) - f(x)| < |g(x) - x_0| + |f(x) - x_0| < \epsilon/2 + \epsilon/2 = \epsilon$.

Here we have used the fact that g is defined linearly on $[x_0 + \delta/2, x_0 + \delta]$, and $|g(x_0 + \delta/2) - x_0| < \epsilon/2$, and $|g(x_0 + \delta) - x_0| < \epsilon/2$.

We have constructed a map $g \in C^0(I, I)$ such that $d(f, g) < \epsilon$, and ent $(g) > \text{ent}(f) + \log(2)$. Since ϵ was arbitrary this completes the proof that ent is not continuous at f. Q.E.D.

We conclude this section by remarking that Theorem B is valid with I replaced by the circle S^1 . We use the fact that a dense set of maps in

 $C^0(S^1, S^1)$ have periodic points (see [3]).

Let $f \in C^0(S^1, S^1)$ and $\epsilon > 0$. Let $f_1 \in C^0(S^1, S^1)$ such that f_1 has a periodic point and $d(f, f_1) < \epsilon/2$. By modifying the argument of Theorem B, with a periodic orbit replacing the role of the fixed point, we construct a map g with ent $(g) > \text{ent}(f) + \log(2)$, and $d(f_1, g) < \epsilon/2$. Hence ent is not continuous at f.

5. An example. We close by giving an example of $f \in C^0(I, I)$ such that ent (f) is infinite.

Let K_n denote the interval [1/(n+1), 1/n] for each integer n > 0. Define f on each interval K_n as follows. Let C_n denote the middle third Cantor subset of K_n . Let $f = s^n$ on C_n (again s denotes the full 2-shift defined in $\S 4$) and extend f to K_n by defining f linearly on each open interval in $K_n - C_n$. We extend f to a map in $C^0(I, I)$ by setting f(0) = 0.

It follows from Propositions 2, 5, and 6 that ent(f) = ∞ .

REFERENCES

- R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291.
- 2. L. Block, Bifurcations of endomorphisms of S^1 , Thesis, Northwestern University, 1973.
- 3. L. Block and J. Franke, Existence of periodic points for maps of S^1 , Invent. Math. 22 (1973), 69-73.
- 4. R. Bowen, Topological entropy and axiom A, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 23-41. MR 41 #7066.
- 5. ———, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 43 #469.
- 6. M. Misiurewicz, On non-continuity of topological entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 319-320. MR 44 #4781.
- 7. M. Shub, Dynamical systems, filtrations, and entropy, Bull. Amer. Math. Soc. 80 (1974), 27-41.
- 8. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; erratum, 39, p. 1593.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611