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NONCONTINUITY OF TOPOLOGICAL ENTROPY OF MAPS

OF THE CANTOR SET AND OF THE INTERVAL

LOUIS BLOCK

ABSTRACT.   We show that topological entropy, as a map on the space

of continuous functions of the Cantor set into itself, is not continuous

anywhere.   Furthermore, topological entropy, as a map on the space of con-

tinuous functions of the interval into itself, is not continuous at any map

with finite entropy.

1.  Introduction.   For a compact topological space S, let  C (S, S) denote

the space of continuous functions of S into itself with the topology of uni-

form convergence. Let  / denote the unit interval [0, l] and  C  the Cantor

set (the usual middle third Cantor set).   For / £ C  (S, S), let  ent(/)  denote

the topological entropy of / as defined in [l].  (We review the definition in

$■2.)  ent(/)  is a nonnegative real number, or °°, which describes (quantita-

tively) the action of / considered as a discrete dynamical system.

Our main results are the following:

Theorem A.   The function ent: C (C, C)—• R \j [°°i  is not continuous

anywhere.

Theorem B.   The function  ent: C (/, /)—*R U {<*>!  is not continuous at

any map f with  ent(f) finite.

We note that Theorem B is valid with  / replaced by the circle S  .  (See

remarks at the end of §4.)

Topological  entropy  has been studied in [4], [5] and [7] in connection

with Smale's program [81 for studying the orbit structure of differentiable

maps of manifolds.  However the definition and basic properties rely only on

continuity (see [ll).  Thus it seems natural to determine what is true in the

continuous case before proceeding to the differentiable case.

There are examples on higher dimensional manifolds (see [6]) to show

that entropy is not continuous in the differentiable case.  However, for the
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circle or the interval the problem is, open.  In this connection we mention the

following.  Let  C  (M, M)  denote the space of continuously differentiable maps

of a compact manifold M  into itself with the  C     topology.

Theorem C.   The function ent: C (M, M)—>R   is continuous at the identity

map of M.

This follows from Proposition 12 of l5J.

Finally we remark that positive results on continuity of entropy would

have obvious consequences in the theory of bifurcations of differentiable

maps.  See [2] for some results in this direction.

2.   Preliminary definitions and results.   We begin by reviewing the defi-

nition of topological entropy as defined in [l].   Let X  be a compact topo-

logical space.  For any two open covers  IT  and  ,a  of X, let Cl   V ,ß denote

\A n B\ A £ (A and  B £ 9$}.   Let /V(C?)  denote the number of sets in a subcover

of O   of minimum cardinality.

Let f £ C (X, X).  For each integer « > 0  let

Mn(â) = N((î V f-H@) V • ■ • V f-n((f)).

Here /~  (Ö)  denotes the open cover \f~   (A)\A £ QJ, and /"   is defined in-

ductively by / ! = / and /" = /"_ ' o  / for „ > J.

Set

ent(/, 6?) =  lim    n~l log MJ(Gt).
TZ->°°

It is easy to show that this limit exists and is finite (see [l]).   Finally we

define the topological entropy of / by  ent(/) = sup ent (/, Ct)  where the

supremum is taken over all open covers  U of X.

Next we define the notion of nonwandering set.  Let / £ C (X, X).  A

point x e X is said to be wandering if there is a neighborhood 0 of x  such

that /"(O) n 0=0  for each integer w > 0.  The set of points which are not

wandering is called the nonwandering set and denoted il if).  We remark that

il if) is a closed subset of X  and f iii if)) Cilif).

The following proposition is proved by Bowen in [A]. Here  X is a com-

pact metric space.

Proposition 1.   Let f £ C°(X, X).   Then entif) = ent (/| 0 (/)).

One of the inequalities necessary for Proposition 1 follows immediately

from the following basic fact which is proved in [l].

Proposition 2.   Let f £ C°(X, X)  and let  K  be a closed subset of X
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such that fiK)C K.   Then entif) > entif\K).

It follows immediately from the definition that if K is finite and / £

C (K, K)  then  ent(/)= 0.  Hence by Proposition 1 we have

Proposition 3.   Let f £ C°(X, X).   // ilif)  is finite then  entif) = 0.

From the definition of ilif)  it follows that ilif) C Im(/) (the image of

/). Hence we have

Proposition 4.   Let f £ C°iX, X).  If Imif)  is finite then  entif) = 0.

3. Proof of Theorem A. We may think of the Cantor set C as the set of

infinite sequences (x x • • •) such that each x, is I or 2. The topology

on   C is then given by the metric

oo

diixl,x2,-.-),iyvy2, •••))= Z (2-<)|x.-y.|.
z' = l

(Equivalently we are thinking of  C  as the infinite product of the set {l, 2\

with the product topology.)

Let f £ C (C, C).  We have two cases.

Case 1.  ent (/) > 0.

Define a sequence  (/,)  of functions in  C  (C, C)  as follows.   Let

fk(xv x2, •••) = (yj, y2, ■■■, yk_ltyk, 1, 1, 1, •••)

where f(x  , x     • ■ ■ ) = (y     y     • • • ).  In other words /,   is the function which

assigns to a sequence  (x., x,, • • •)  the sequence whose first  k terms are

the first  k terms of /(x  , x2, • • •)  and whose terms past the Mi term are all 1.

Note that the image of the map /,   is a finite set consisting of at most

2    points.  (For example the image of /,  consists at most of the points

(l,'l, 1,1,1, •••),(!, 2, 1,1,1,-.-), (2, l,l,l,'l,.--),and(2, 2, 1,1,1,.--).)

Hence by Proposition 4, ent (/, ) = 0.

It is easy to see that the sequence  (/, )  converges uniformly to /. In

fact if f > 0, we can choose an integer N  large enough to insure that

(2~=N + 1 2~k) < f.  Then for k>N,

d(fk(xx ,x2, ■■•), /(xj, x2 , •••))< f

for any  (x j, x 2, • • • ) £ C.

Case 2.  ent(f) = 0.

Define a sequence  (g, ) of functions in  C (C, C)  as follows.   Let

f(xy x2, •• •) = iyv y2, - ■■) and set
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gk(xvX2,   ...)=(y1,y2,   ■■■,yk_1,yk,Xk+2,Xk+i,   ■ ■ ■).

In other words  gAx,, x-¡, • • •)  is the sequence whose first k  terms are the

same as the first k  terms of f (x,, x2, ■ ■ ■ ), and whose 72th term for T2 > k

is  *„+!•

As in Case 1, it is clear that (g )  converges uniformly to /.  We con-

clude the proof by showing that for each integer k > 0, ent(g^) > log(2).   Fix

7€>0.

Let  0,   be the set of sequences  (x., x2, • • • )  such that x, +J = 1.   Let

02  be the set of sequences  (x., x2, ■ ■ A  such that x   +1 = 2.   Then  Cl =

{O,, 0A is an open cover of C.  We will show that  ent(g, , CO = log(2).

Let x = (x,, x     • ■ • ) e C. Then

x £0ing-1(0l) ~ *fe+1 = l and xk+2 = l,

x eOj ng-U02) « xfe+1 = 1 and xfe+2_=2,

x£02ng~1(01) ~ *fc+1 = 2 and *t+2 = l,

xe02ng-1(02) « xfe+1 = 2 and x^+2 = 2.

Thus the sets Oj H g'HOj), 0in g^iO^, 02 O ¿¡"HOj),  and

02 n gr  (02)  are pairwise disjoint nonempty subsets of C.  Hence

Mj(g, , Ct) = 4.   It follows in the same way by induction that M ig,, Cl) =

2" + 1  for each integer T2 > 0. Hence ent (g, , Cl) = log(2).  This implies that

ent(g.) > log(2), and completes the proof of Theorem A.

We remark that since the diameter of Q V gT  i&) V   • • ■ V   g7"i&)

approaches zero  (as 72—»°o); it actually follows that ent(g,) = log (2).

4.   Proof of Theorem B.   Let  K denote any closed interval on the real

line.  We may form the middle third Cantor subset of  K, which we denote by

C, and we may identify points in  C with sequences whose terms are all 1 or

2, as in §3.

Let  5 denote the map in  C (C, C)  defined by  s (x., x_, x     • • • ) =

(x2, x     *4, • • •).  s  is sometimes called the full 2-shift (see [8] for discus-

sion and further references).  We will use the following elementary facts

(see [l]).

Proposition 5.   ent(s) = log(2).

Proposition 6.   If f £ C°iX, X) for any compact space  X, then entif") =

72 • ent(/).
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We will use the usual metric  d on  C  (/, /)  which may be defined by

dif, g)= sup{|/(x)-g(x)|: x e/i.

Theorem B.   The function ent: C il, i) —'Rui00!   is not continuous at

any map f with  entif) finite.

Proof.   Let / e C°(/, /)  with ent(/) finite.  Let ent(/) = log(zv).  Pick

an integer ttz > 0, such that  2m > 2K.

Let  x-   be a fixed point of /.  We assume for simplicity that xQ 4 1.

(The proof can be easily modified for the case  xQ = 1.)

Let ( > 0.   3 z5 > 0  such that if  |x - xQ| < 8 then   |/(x) - xj < e/2.  We

may choose 8  so that z5 < e/2  and  x- + 8 < 1.

We construct a map g £ C (/, /)  such that dif, g) < e.  We first construct

g on the interval [xQ, x„ + 5/2] as follows.  Let C denote the middle third

Cantor subset of the interval  [xQ, xQ + ¿5/2].  Define g on  C by  g = sm,

where  s  denotes the full 2-shift as defined above.  Note that gixA = xQ   and

g(x„ + <5/2) = xQ + ¿5/2  since  xQ  is identified with the sequence (l, 1, 1, •••)

and  x    + ¿3/2  is identified with the sequence  (2, 2, 2, • • • ).  We extend g to

the interval  [xQ, xQ + ¿5/2]  by defining g  linearly on each open interval in

[xQ, xQ + z5/2] - C.

Next we extend g to the interval  [xQ, xQ + ¿5]  by defining g on the

interval  [xQ + ¿5/2, xQ + ¿5]  as follows.  Let gixQ + 8/2) = xQ + ¿3/2,

g(xQ + 8) = fixQ + 8), and define g linearly on  [xQ + 8/2,   x- + 8].  Finally

we extend g  to a map in  C (/, /) by defining g(x) = fix) for x £ I —

[x0, x0 + 8].

Note that

ent(g) > entUm) = log(2m) > log(2K) = log (2) + log(K).

We must show that for all  x £ I, \fix) - gix)\ < t.

If x e / - [x0, x0 + 8] then   \f(x) - gix)\ = 0.   If x £ \xQ, xQ + 8]  then

|g(x) - /(x)| < |g(x) - x0| + |/(x) - x0| < f/2 + e/2 = e.

Here we have used the fact that g   is defined linearly on  [xQ + ¿5/2, x„ + ¿5],

and   |g(x0 + ¿5/2) - xj < e/2, and   |g(xQ + ¿5) - xQ\ < e/2.

We have constructed a map g £ C il, l)  such that dif, g) < e, and

ent(g) > ent(/) + log (2).  Since  e was arbitrary this completes the proof that

ent is not continuous at /.     Q.E.D.

We conclude this section by remarking that Theorem B is valid with  /

replaced by the circle  S  .  We use the fact that a dense set of maps in
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C°(S1, S1) have periodic points (see [3]).

Let / e C°is\ S1)  and   e  > 0.  Let f1 £ C°(S1, S1)  such that fx  has a

periodic point and  d(f, /.) < e/2.   By modifying the argument of Theorem B,

with a periodic orbit replacing the role of the fixed point, we construct a

map g with ent (g) > ent(/) + log(2), and d(f^, g) < e/2. Hence ent is not

continuous at /.

5.  An example.  We close by giving an example of / £ C (/, /)  such that

ent (/) is infinite.

Let  K     denote the interval  [1/(t2 + l), I/72]  for each integer 72 > 0.

Define  / on each interval  K     as follows.  Let  C    denote the middle third
1 n n

Cantor subset of  K  .  Let / = s"  on  C    (again  s  denotes the full 2-shift
tz ' n       &

defined in §4) and extend f to  K    by defining / linearly on each open

interval in  K   — C  .  We extend / to a map in  C (/, /)  by setting /(0) = 0.

It follows from Propositions 2, 5, and 6 that  ent(/) = °°.
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