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LOCALLY FINITE RING VARIETIES

AWAD A. ISKANDER

ABSTRACT.   Necessary and sufficient conditions are given for a

variety of associative rings to be locally finite.   These conditions

are utilized to show that a variety is generated by a finite ring if, and

only if, it contains only finitely many subvarieties.   Also, the Everett

extension of a variety by another variety is a locally finite variety (a

variety generated by a finite ring) if, and only if, each of the varieties

is locally finite (generated by a finite ring).

All rings considered here are associative and not necessarily with 1.

A variety (an equational class) of algebras is a class of algebras closed un-

der homomorphic images, subalgebras and Cartesian products; or equivalently,

it is the class of all algebras satisfying a set of identities (cf., e.g., [l], [2],

[3], [9], [10], [11]).   A variety is said to be locally finite if every finitely

generated member is finite.   We show that a locally finite ring variety is pre-

cisely a variety satisfying t?2X = 0  and xr + xT    q(x) = 0  for some positive

integers  t?2, r and some  q(x) £ Z[x].   In [6], R. L. Kruse shows that the iden-

tities of a finite ring are finitely based; the arithmetical ring case is shown

by H. Werner and R. Wille [13].   From [6], it also follows that a finite ring

generates a variety containing only finitely many subvarieties.   We show here

that the converse is also true.   If U   and B  are ring varieties, then the class

U . 5ß  of all rings possessing an ideal belonging to H   whose factor belongs

to  SB is a variety [4], [8], [9], [10].   We show that the set of all locally finite

varieties (varieties generated by a finite ring) is closed under products and

hence under lattice joins and meets.

1.   In a locally finite variety, every member generated by one element

is finite.   There are varieties of groups whose cyclic members are finite, but

the varieties are not locally finite:   the Burnside varieties of groups,  x" = 1,

72  is sufficiently large [10].   The situation is different for rings.
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Theorem 1.   For a variety  53  of rings, the following conditions are

equivalent:

(1) 53  is locally finite.

(2) Every ring in  53 generated by one element is finite.

(3) For some positive integers m, n and for some polynomial q(x) £ Z[x]

of degree < n — 1, 53  satisfies mx = 0,  x" + x^(x) = 0.

(4) For some positive integers m, r and for some polynomial t(x) £ Z[x],

53 satisfies  mx = 0,  xT + xT    r(x) = 0.

Proof.   All the conditions are satisfied in the variety of one element

rings.   We can assume that  53  contains a ring with a nonzero element.   It is

clear that (l) =» (2).   Assume (2).   Hence  F ^53)—the free ring of 53  on one

generator—is finite of characteristic 772 > 1.   Let 772 = pj1 - - - p"s be the prime

factorization of 777.   If  53 . is the subvariety of 53   satisfying pa*x = 0,   1 .< i

< s, then  53 = 53. x • • • x 53  .   So, it will be sufficient to check the case of

varieties  53   satisfying p x = 0, where pisa prime.   Consider the subvariety

53' of  53  satisfying px = 0.   Fj(5ß') » xZ  [x]//, where  /  is a T-ideal of

xZ [x].   / is principal, i.e.,  / = xg(x)Z  [x]  for some g(x) £ Z  [*}.   As Fj(53')

£ 53, F.(53') is finite and g(x) 4 0.   Also, as  53  contains a ring of more than

one element, g(x) i Z  .   Thus xg(x) is of degree > 2.   Thus  53    satisfies

xg(x) = 0, i.e.,  53'  satisfies xn + xq(x) = 0  and xr + xT    h(x) = 0  for 72 =

degree of xg(x)  and r = order of xg(x), degree of q(x) .< n — Í, n > 1, r > 1.

But F j(53') S F ^VpF ,(58), and pk~ \pF ¿%)) = 0, (pF j(S3))* = 0.   If a e

Fj(S3), then an + aq(a) epFj(53) and aT + aT + lh(a) £ pF ¿%).   Hence

(an + aq(a))k = 0 = (ar + ar+1h(a))k,

i.e., 53  satisfies conditions (3) and (4).

Conditions (3) and (4) are equivalent for rings of prime characteristic.

Assume (3).   If A e 53, then A/pA e 53' and B = A/pA  is an algebra over

the prime field  Z       If A  is finitely generated, so is  B.   Hence by a result

of I. Kaplansky [5] (in case A  is finitely generated) B   is finite dimensional

over  Z     i.e.,  B  is finite.   By a result of J. Lewin [7], pA  is a ring of fi-

nite index in  A; and pA  is finitely generated.   Also  pA  is nilpotent of

characteristic p       ; therefore, pA  is finite.   Thus  \A\ = \pA\ . |ß|  is finite,

concluding the proof of Theorem 1.

Corollary 1.   For any ring varieties XL  and 53, XL '53  is locally finite if,

and only if,  XL  and 53  are locally finite.
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Proof.   XL, 33 < 11-33.   If 11 • 53 is locally finite, 11  and 53 are subvarieties

of a locally finite variety, and hence are locally finite.   Conversely, if 11

and 53  are locally finite, then 11   satisfies mx = 0,  xr + xT+ïq(x) = 0; and 53

satisfies  tzx = 0,  xs + xs     t(x) = 0, for some m, n, r, s >0 and q(x), t(x) £

Z[x].   11 -S3   satisfies

77772X = 0  = (XS + XS+lt(x)Y + (x* + XS+X t(x))*1 q((XS + XS+lt(x))).

2.   The variety of all rings satisfying px = 0,   xp = 0 (p > l) has infi-

nitely many subvarieties.   However, a finite ring generates a variety with

only finitely many subvarieties [6].   In fact, the converse is also true.

Theorem 2.   A ring variety contains only finitely many subvarieties if,

and only if, it is generated by a finite ring.

Proof.   Let 53 be a variety possessing only finitely many subvarieties

Denote by  53  , the subvariety of 53  generated by a free member of 53  of rank

», b= 1, 2, 3, ••• .   Then S3 j < SS 2 <•••<%„ <---<53, and S3 is the lattice

join of all  53     [2], [9], [10].   Since  53  contains only finitely many subvarie-

ties, this chain must be stationary, i.e., there is k > 0  such that 53    = 53,

for all  72 > k, i.e.,  53 = 53,.   That is,  53  is generated by a finitely generated

member.   By Theorem 1, it will be sufficient to show that  53  satisfies con-

dition (3).   First  Fj(53)  is of positive characteristic; otherwise, Fj(53)/pF1(S3)

4 0  for every prime p, and 53  would contain an infinite family of minimal

varieties  [12].   Thus  Fj(33) is of characteristic  772 > 0.   We can assume that

772 > 1.   If 772 = pa. I • ■ • p"s is the prime factorization of 777, 33=tt,xU2x---x

11     where 11 . is the subvariety of 53  of all rings satisfying p^xx = 0,   1 < 2

< s.    Thus, it will be sufficient to check the case  53   satisfies  pnx = 0; p  is

a prime.   Let  53    be the subvariety of 53 of all rings satisfying px = 0.   Then

Fj(S3')^  xZp[x]/xg(x)Zp[x].

If g(x) = 0, then F ,(53' ) Si xZ  [x]   and  53'  contains all commutative rings of

characteristic p  and hence an infinite number of subvarieties.   Hence g(x) 4

0, i.e., 53'  satisfies xr + xr   lq(x) = 0, px = 0, where  r - 1  is the order of

g(x), from which, we infer that S3  satisfies condition (3).

Theorem 3.   For any ring varieties XL  and S3, U -S3  is generated by a

finite ring if, and only if, each of XL  and S3  is generated by a finite ring.

Proof.   If 11 -S3  is generated by a finite ring, 11 "S3  contains only finitely

many subvarieties.   Thus U, S3 < 11 • S3  contain only finitely many subvarie-

ties.   Hence by Theorem 2, each of U   and  S3  is generated by a finite ring.
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Denote by  £(772, 72, e) [6], where  772, 72, e  are positive integers, the class

of all rings  A   with the property 772A = 0, every primitive homomorphic image

of a subring of A   is a simple finite ring of order dividing 72, and if B  is a

nilpöient homomorphic image of a subring of A, then Be = 0.   It was shown

in [6, Theorem 8.1] that  &(m, n, e) is a variety generated by a finite ring.

Noticing that every finite ring belongs to some   S(m, 72, e), Theorem 3 will be

proved if we show

Claim.    S(m, 72, e) • &(k, I, f)<&(mk, [n, l], ef), where  [72, /]  is the least

common multiple of 72, /.

Since  S(t72, 72, e)-&(k, I, f) = ñ -3   is a variety, it will be sufficient to

show that if A  e S " Q , then kmA = 0; if A   is nilpotent, then Aef = 0; and if

A is primitive, then A  belongs to S or /t   belongs to Q.

Indeed A eft-Z iff there is an ideal B of A such that ß eS and A/B

£ Q. So 772B = 0 and k(A/B) = 0, i.e., kA < B, and hence mkA < mB = 0. If

A is primitive, it also satisfies xr + xr q(x) = 0 for some r > 0, q(x) £ Z[x]

(since ® and 2 are locally finite and so is fí-C). By Kaplansky's result

[5], A is simple. So, either B = A, i.e., A eS, or B = 0, i.e., A eQ. If A

is nilpotent, both B and A/B ate nilpotent. Hence Be = 0 and (A/By = 0,

i.e., A' C B   and so

Ae/ = {Af)'C Be =0.

3.   From Corollary 1, we conclude that the set of all locally finite ring

varieties is an ideal of the lattice of all ring varieties.   It is closed under

variety product.   The set of varieties that are not locally finite is an ideal of

the multiplicative groupoid of ring varieties.   The set of all varieties each of

which is generated by a finite ring is an ideal of the lattice of all ring varie-

ties strictly contained in the ideal of locally finite varieties.   By Theorem 3,

it is closed under variety product; the set of varieties not generated by any

finite ring is an ideal of the multiplicative groupoid of ring varieties.

The author thanks the referee for a number of valuable remarks.
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