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ON A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM
NGUYEN PHUONG CAC

ABSTRACT. Consider a bounded domain G C RN (N 2 1) with smooth
boundary I'. Let L be a uniformly elliptic linear differential operator. Let
¥ and B be two maximal monotone mappings in R. We prove that, when ¥
satisfies a certain growth condition, given f € L? (G) there is u € H2(G)

such that
Lu+y@w)3 f a.e.onG, and ~au/ov € 'B(ull‘) a.e. on T,
where 9u/av is the conormal derivative associated with L.

1. Let GC RN(N > 1) be a bounded domain with smooth boundary I". Con-

sider the uniformly elliptic linear operator

Lu=-~ D].(ai’.(x)Diu) + bi(x)Diu + c(%)z,

a,,=a],ieC1(a); bi,ceL‘”(G) (i, j=1,2, ¢+, N),

1

ai].(x)fi‘f]. >c|€|?, ¢> 0 constant, Vx € G, £ € RN,

(All functions and scalars that we consider are real.)

Let y: R — 2R be a maximal monotone mapping. The domain D (y)
of y is the set of all numbers s such that y(s) # &. For each s € D(y),
y(s) is a closed interval and thus contains a unique element, which we de-
note by y%(s), having smallest absolute value. We assume that the mapping

y satisfies the condition

@ 1y%(s)] > (s)|s], Vs €Dly) with lim ¢(s) = oo.

S| —o0

It can be verified that y induces a maximal monotone mapping y : L%(G) —

2 .
2L () ih a narural way:

7(@) = {v € LAG)|o(x) € fadx)) ace.d  (u € LAG)).
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Similarly, let B: R — 2R be another maximal monotone mapping and let 8
be the mapping in L2(I") induced by B.

Proposition. Suppose that all the conditions on the operator L and the
mappings y and 3 described above are satisfied. Suppose also that there
exists s, € D(y) N D(B) with 0 € B(s,). Then [or every given [ € L4G),
there exists u € HX(G) such that

) Lu+y(u) 3 [ in the sense of L?(G),

3) ~0u/dv = tzi].Dl.u . cos(n, x].) € B(ulr),

where n is the outward normal to T.

Before proving this proposition in §2, we would like to make a few com-
ments. When (i) y = 0 and the bilinear form

alu, v) = .[G (ai,.DiuD].v +bDu- v+ cuv) dx

is coercive on H!(G), or (ii) Lu = — Au + u, the proposition has been proved

by H. Brézis in [3] and [2] respectively. It seems to us that the general case,

where no coercivity is assumed, cannot be immediately reduced to these cases.
The corresponding Dirichlet problem

4) Lu+ () 5,
5) ul =0
r
has been studied by P. Hess [7], and condition (1) on y is similar to his
condition in [7]. Our method can also be applied to this Dirichlet problem,

and the argument will be simpler than the Neumann-type problem considered

b

here. We feel that the main difference between our method as applied to the
Dirichlet problem and that of P. Hess lies in proving the existence of a
solution for the approximate equation. He uses a theorem on the solvability
of a functional equation involving a demicontinuous mapping of type (§%)
which is similar to one established by him earlier [6, Theorem 1], using a
homotopy argument. Instead, we shall use the well-known Schauder fixed
point theorem (see e.g. [4, p. 105]).

2. The proof makes use of the concept of the Yosida approximation.
Let U: H— 2! be a maximal monotone operator in a Hilbert space H. Then

for every € >0, (I + eU)~1 is a nonexpansive mapping defined on all of H.
The mapping

©6) U€=[l—(l+ e)~1/e
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is called the Yosida approximation of U (at e). U, is Lipschitzian with Lip-
schitz constant 2/¢ and monotone. For more details on Yosida approximations
we refer the reader to M. Crandall and A. Pazy [5], or T. Kato [8]. In the
case of the maximal monotone mappings y and B introduced in $1, it can be
verified that the Yosida approximation of y for example is generated by y,.
Proof of the proposition. We observe that by shifting and changing vari-
able, we can assume without loss of generality that 0 € y(0) and 0 € 8(0).
Then yf(O) = :Be(O) = 0. The proof consists of proving that the approximate

problem
(7) Lu+ )_}f(u) =/,
(8) - 9u/dv = _ﬁ_e(uh)

has a solution u, € H*(G) for all € > 0 sufficiently small. We then pass to
the limit as € | O using estimates for u, independent of e.
I. Proof that the approximate problem has a solution. Let

! n [
L'u= -Di(aijDiu)’ L"=L-~-L"
a'(u, v) = fG a,;DuD v dx  (u, v e HY(G)).
For u given in H!(G), the linear form
w—a', w)+ [ Iy )+ dwdc s [ B wd  (weH'(G),
is continuous on H!(G), so that there is an element @ u € [H}(G)]' with
1
(Ru, w) = a'(u, w) + fG [)’e(”) + wwdx + fr Be(”|r)w“T (w € H'(G)).

It can be verified that the mapping u— (f« is bounded, hemicontinuous,
strictly monotone and coercive. Therefore (see [4, Theorem 1} or [9, Chapter
2, Theorem 2.1]) for every given v € H(G) there exists a unique z € H!(G)
such that for all w € HY(G)

(Qu, wy= a'(u, w) + fG [ye(u) + Wwdx + fl‘ Be(ulr)Wdr

- fG (f- L"v + v)wdx.

We then deduce that the boundary value problem

9) L'u + Ye{@) + u= [~ L"v + v in the sense of D'(G),

10) =9u/dv = B ()

has a unique solution u, € HY(G). If we bring ye(u) to the right-hand side
in equation (9), then it follows from [3, Theorem I. 10], that u, € H*(G).
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It now suffices to show that the mapping T _: v—u  in H(G) has a fixed
point.

(a) The mapping T, is continuous. let v , v, €H 1(G) and uy=TSv,),
u, = Te(vz)' The continuity of T, can be seen by takmg the dxfference of
equations (9) corresponding to v, and v, and then taking the inner product
in L%(G) of this with u| — u,.

(b) There is an integer K> 0 and an €9 > 0 such that T, (0<e< fo)
maps the closed ball B (0) of HYG) into itself. If not, foreach n=1, 2, ---
there are ¢, with 0<¢, <n~!, v with |v ||, < n, u, with |l |, >n (where
Il is the norm in H'(G)) satisfying (9) and (10) with €= ¢ . Taking the

inner product in L2(G) of (9) with n~ lwn = n'zun we obtain

-2 =2 2
a'(w, w )+ L, n 3€n(un)undr + fG n yen(un)un dx + |w |lg
=l = L, 40 )l - Mo,
where ““0 is the norm in L2(G). From this we deduce

(11) 1<"wn“1<c (n=1)27”°)7
—2 = LU )
(12) IG n yfn(un)un dx<C (n=1,2, ).

Here and in the sequel C denotes various positive constants independent of
y, B, €. Now taking the inner product in L%(G) of (9) with n~ 2yen(un) we
obtain (for justification see [1] or (10, Appendix 1] for a special case), re-

1

calling w =n""u,;:

-2 =2
fG y6 (u )al]DlwnD w dx + fl“ n Ben(un)yen(un) dr + fG n yen(un)un dx
+ ey, @I < et = L + v )] g - In7hy, @)

n n
The third integral is nonnegative. Since 0 €y (0), Ve, (+) is monotone in-
creasing so that ye (u (x)) > 0 a.e. and the first integral is also nonnegative.

Moreover, we observe that if  (x) =0 then ,3€ (u )ye (u ) =0, and if
u, (x) # 0 then

-2
Ben(“n))’en(“n) = Bfn(un)un . yen(un)un ~u7?>0,
so that the second integral is also nonnegative. We then deduce that

ln=ty, @)y <C  (n=1,2,--)
n

We now write
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13) Llwn rw = n'l(/_ L"Un +tv, - ysn(un)),

(14) —awn/av = n'lﬁf (u"h')'

Since the right-hand side of (13) remains bounded in LZ(G), it follows from
(3, Theorem 1.10], that |lw |, < C(n=1, 2, ---), where ||-||, denotes the
norm in H2(G). Because the imbedding of H%(G) into H!(G) is compact, we
can extract a subsequence, still denoted by {w }, of {w, } such that w_
converges strongly in H(G) to w and w, converges a.e. on G to w. Since
||wHl >1(n=1,2,---), wlx) £ 0 on a subset of G of nonzero measure. We
shall see that this contradicts condition (1) on y and (12). In fact, putting
s,(x) = (I + ¢,y )7 1u (x), we obtain with ¢,(x) € y(s (x))

(1s) u (%) = s (x) +e 1 (),
(16) n'zye (u,(x)z (x) = n'zun(x)tn(x) = |w, (x)] - n“|tn(x)|.
n
Consider x € G with lim |w_ (x)] >0, i.e. lim, [u (x)| = co. Then
: -1
l;m n |tn(x)| = o0,
For otherwise there would be a subsequence such that
-1
szp ng ltnk(x)| < oo,
From (15) it then follows that
(17) lim inf n7Ys_ (x)| > lim 271z (%) > O.
k kl"k I‘k klu"kx)l
By condition (1) on y,
-1 - -
ng |tnk(x)| > nkllyo(snk(x)) | > qS(snk(x))nkllsnk(x)I.

Since lim, |Snk(x)| = co, lim, ¢ (snk(x)) = . This together with (17) shows
that

lim n"l|t ()] = o
ok
and we thus arrive at a contradiction. From (16) we therefore see that

lim n"zye (un(x))un(x) = o0

on a subset of G of nonzero measure. By Fatou’s lemma, this contradicts

(12).

(c) The mapping T, (0<ex< 60) of BK(O) into itself is relatively
compact. In fact, by an argument similar to that in the last step, we see
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that for all v € B, (0), | T ()|, < C. Since the imbedding of H*(G) into
H(G) is compact, we deduce that the closure of Te(BK(O)) is compact.
Thus by the Schauder fixed point theorem [4,p. 105], T, (0<e< eo) has
a fixed point in BK(O).
1I. Passing to the limit as ¢ | 0. Using the same argument as in Step
I(b) above (take the inner product in L2(G) of (7) with z and then with
¥{«)), we see that there is a constant C independent of ¢ such that a solu-

tion u,. of (7) and (8) satisfies
e, <G Ny, @lly<C  (0<e<ey).

Since the mapping U— | of HYG) onto HA(I") C LAT") is continuous,

we can extract a subsequence {ue } with the following properties
n

u, converges weakly to « in H(G),
n

Lu, converges weakly to Lu in L2(G),
n

u, converges strongly to u in HY(G),
n

yen(uen) converges weakly to —Lu + { in LAG),

du, /dv converges weakly to du/dv in L3I
n
(i.e. Be (u6 | ) converges weakly to —du/dv in LA(T)),
n n|l
u, . converges strongly to Y in L%(I).
nll" r

From a property of Yosida approximations [8, Lemma 4.5], it then follows
that

ueDy), -Lu+[eya); “ e D(B), -du/dv € B(uh.)

and the proof is complete.

From the proposition we deduce the following

Corollary. Suppose that the conditions in the proposition are satisfied.

Then for any k, > 0, k, > 0, the boundary value problem
Lu+y(w) 3/, —kyu - kzau/av € _ﬁ_(uh‘)
has a solution u € HX(G).

Proof. The boundary condition can be written as

—-du/dv € klkglu + k;lﬁ(uh‘)-

On the other hand, it can be verified that klk'z' I+ k3 1[3 is a maximal
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monotone mapping in R, using the well-known fact that a monotone mapping
U in a Hilbert space H is maximal if and only if for all A > O the range of
I + AU is the whole of H (see e.g. 2.
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