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ON A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

NGUYEN PHUONG CAC

ABSTRACT.  Consider a bounded domain G C R     (_N>1) with smooth

boundary  T .   Let  L   be a uniformly elliptic linear differential operator. Let

y  and  ß be two maximal monotone mappings in  R.  We prove that, when  y
? 2

satisfies a certain growth condition, given f £ L   (G ) there is  u € H   (G)

such that

Lu + y(u) 3 f    a.e.  on  G,        and        -du/d v e ß(u\ )    a.e.  on  T,

where  du/civ  is the conormal derivative associated with L.

1. Let GC R   (N > l) be abounded domain with smooth boundary Y.  Con-

sider the uniformly elliptic linear operator

L22 = -D.U..(x)D.T2) + b.(x)D.u + c(x)u,

a.. = a.. £ Cl(G); b., c e L°°(G)       (i, j = 1, 2, • •, , N),

««(*)£ff- > c|£|2,     c> 0 constant,  Vx £ G, f £ RN.

(All functions and scalars that we consider are real.)

Let y : R —> 2     be a maximal monotone mapping.  The domain D(y)

of y  is the set of all numbers  s  such that y (s) / 0-  For each s £ D(y),

y(s)  is a closed interval and thus contains a unique element, which we de-

note by y (s), having smallest absolute value. We assume that the mapping

y  satisfies the condition

(1) |y°(s)| > <p{s)\s\,     Vs£D(y)  with     lim     0(s) = °°.
|s| —«oo

It can be verified that y  induces a maximal monotone mapping y : L  (G) —»

2      (       in a natural way:

y(u) ={v £ L2(G)|iXx) £ yiu(x))  a.e.}       (u £ L2(G)).
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Similarly, let ß: R —• 2R  be another maximal monotone mapping and let ß

be the mapping in  L2{Y) induced by /3.

Proposition.  Suppose that all the conditions on the operator L  and the

mappings y and ß described above are satisfied.   Suppose also that there

exists  s    £ D(y) Cl D (ß)  with  0  £ ß(sQ).  Then for every given f £ L  (G),

there exists  u £ H2{G) such that

(2) Lu + y(u) 3 f in the sense of L (G),

(3) -du/dv = a^D.u ■ cos(n, x.) e ß(u\  ),

where  n  is the outward normal to Y.

Before proving this proposition in §2, we would like to make a few com-

ments.  When (i) y s 0   and the bilinear form

a(u, v) =   \„(a..D.uD.v + b .D .u • v + cuv) dx
' JG     ij   i     / it

is coercive on  Hl(G), or (ii) Lu = - IXu + u, the proposition has been proved

by H. Brezis in [3] and [2] respectively.   It seems to us that the general case,

where no coercivity is assumed, cannot be immediately reduced to these cases.

The corresponding Dirichlet problem

(4) Lu+y(u) 3 f,

(5) u\    =0,lr

has been studied by P. Hess [7], and condition (1) on y is similar to his

condition in [7].  Our method can also be applied to this Dirichlet problem,

and the argument will be simpler than the Neumann-type problem considered

here.  We feel that the main difference between our method as applied to the

Dirichlet problem and that of P.   Hess lies in proving the existence of a

solution for the approximate equation.  He uses a theorem on the solvability

of a functional equation involving a demicontinuous mapping of type (S  )

which is similar to one established by him earlier [6, Theorem l], using a

homotopy argument.  Instead, we shall use the well-known Schauder fixed

point theorem (see e.g. [4, p. 1051).

2.  The proof makes use of the concept of the Yosida approximation.

Let   U: H —> 2     be a maximal monotone operator in a Hubert space  H.  Then

for every  <r > 0, (/ + eU)~ 1   is a nonexpansive mapping defined on all of H.

The mapping

(6) Ue = Yl-U+eU)-l]/e
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is called the Yosida approximation of  U (at e).   U( is Lipschitzian with Lip-

schitz constant   2/e and monotone.   For more details on Yosida approximations

we refer the reader to M. Crandall and A. Pazy [5], or T. Kato [8].  In the

case of the maximal monotone mappings y  and ß  introduced in  §1, it can be

verified that the Yosida approximation of y tot example is generated by  y  .

Proof of the proposition.  We observe that by shifting and changing vari-

able, we can assume without loss of generality that  0 £y(0)  and  0 £ ß(0).

Then y((0) = /3f(0) = 0.  The proof consists of proving that the approximate

problem

(7) Lu+y((u) = f,

(8) -du/dv=ßf(u\r)

has a solution u   £ H2iG) for all f > 0 sufficiently small. We then pass to

the limit as í I  0 using estimates for 72    independent of t.

I.   Proof that the approximate problem has a solution.  Let

L'u = -D.(a..D.u),        L"=L-L',

a'(u, v) =   f   a..D.uD.vdx      (u, v e H1(G)).
JG    "   '     i

For  72 given in  /7(G), the linear form

w —, a'(u, w) +  j     Yy({u) + u]wdx+ J    ß(iu\  )wdY       (w £ H (G)),

is continuous on H (G), so that there is an element u u £ [W (G)]     with

{au, w) = a'(u, w) +   f    [y (u) + u]wdx+   f   ß (m  )wdY       (w e hHg)).
%f   vJ t »^   A I 1

It can be verified that the mapping  22—>U22  is bounded, hemicontinuous,

strictly monotone and coercive.  Therefore (see [4, Theorem l] or [9, Chapter

2, Theorem 2.1]) for every given v £ H  (G) there exists a unique  22 £ H  (G)

such that for all w £ Hl(G)

(du, w}= a'(u, w) + J     Yy({u) + u]wdx + Jr ß({ut  )wdY

(f — L"v + v)wdx.J,IG

We then deduce that the boundary value problem

(9) ¿.'22 + y (u) + u = f - L"v + v in the sense of m'(G),

(10) -óVoV=23f(22|r)

has a unique solution  u    £ H {G).  If we bring y Au) to the right-hand side

in equation (9), then it follows from [3, Theorem I. IO], that  22    £ H'(G).
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It now suffices to show that the mapping  T(: v —. 22    in  H1(G)  has a fixed

point.

(a) The mapping  T(  is continuous.   Let vv v2 £ Hl(G)  and  ul = TivJ,

«2 = T((v2).  The continuity of  T    can be seen by taking the difference of

equations (9) corresponding to v^   and v2   and then taking the inner product

in  L2(G) of this with u. - u,.

(b) There is an integer  K > 0  and an eQ > 0 SZ2C/7 that  T( (O < e < en)

772í2ps Z/>e closed ball BK(0)  of H1(G)  into itself.  If not, for each 72= 1, 2, •••

there are  c    with 0 < e    < n~   , v     with  \\v  II. <  n, u    with   ||«   ||, > 72 (where
n n '72 u   n " 1 — 72 M   72 " I

H - U !   is the norm in Hl(G)) satisfying (9) and (10) with  e = e      Taking the

inner product in  L2(C)  of (9) with  ?2-   w^ = t2_222     we obtain

a'(w , w ) +   L n~2ß    (u )u   dY +   |     ri~   y   (72 )í2   íZx
n'      72'        Jr 's        »     « >G ' t       n'   n

•" n JKJ n

= \\n-Hf-L"vn + vn)\\0.

where  ||-||0   is the norm in  L2(G).  From this we deduce

(11) KWwJ^C       (72=1,2,...),

"""Jo

(12) f    72   2y   (u )u   dx < C       (n = 1, 2, • • • ).
1(7 '£       n    71•,u 72

Here and in the sequel  C denotes various positive constants independent of

y, ß, (. Now taking the inner product in  L  (G) of (9) with  n~  ye (u ) we
' e72       "

obtain (for justification see [l] or [l0, Appendix il for a special case), re-

calling  w   = n~   u  :
0 72 72

y'  (22 )a..D.w D .w   dx +       n    ß    (u )y   (22 ) dY +   |     72    y    (u )u   dx
JC   Yin      72       27      2      72      7      72 Jp ^C„       n''^       72 ' JG ^       72'    77

+ l»-V£ («B)H2o < \n-\i- L\ + t7n)||0 • |«-V£ U„)||0-
72 72

The third integral is nonnegative.  Since  0 £y(0), y    (•)  is monotone in-

creasing so that y  (22 (*)) > 0  a.e. and the first integral is also nonnegative.

Moreover, we observe that if  u (x) = 0  then ß. iu )y    (u ) = 0, and if
72 tn       72        t„       72

u (x) 4 0 then

72 72 72 72

so that the second integral is also nonnegative.  We then deduce that

77

We now write
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(13) L'w   + w   = n    (f - L"v   + v   - y(u )),
n n ' n n       ' t       n

n

(14> -dwjdv = tTlßt iuiT).

Since the right-hand side of (13) remains bounded in  L  (G), it follows from

[3,Theorem 1.10], that  ||u7j| 2 < C (72 = 1, 2, • • ■ ), where  ||.||2  denotes the

norm in  H2(G).  Because the imbedding of H (G) into  H  (G)  is compact, we

can extract a subsequence, still denoted by \w  I   of {w  ]  such that 222
* ' J 72 72 72

converges strongly in H  (G) to  222  and w    converges a.e. on  G  to 122. Since

IIHI i>   l(»= 1,2, •■•), «X*) 4 0 on a subset of G of nonzero measure.  We

shall see that this contradicts condition (1) on y  and (12).  In fact, putting

s„{x) = (/+ tny )_122 (x), we obtain with  tn(x) £y(sn(x))

(15) u (x) = s (x)+e  Z (x),
77 72 72   72

(16) 72-2ye (un(x))un(x) = n-2un(x)tn(x) = |u7bU)| . n-l\tn(x)\.
n

Consider x £ G  with  lim   I722  (x)| > 0, i.e.  lim   \u (x)\ = 00.   Then
n *    n       * ' 72 '   72       '

lim n     |Z (x)| = 00.
72

For otherwise there would be a subsequence such that

SUp 72~   |Z      U)|   < 00.
k fe        "k

From (15) it then follows that

(17) lim inf 72:;11s    (x)| > lim n^lu    (x)| > 0.

By condition (1) on y,

•S1!'. Wl > n?\y°{s    (,)) I > 0(sn (x))72-1|sn (x)|.

Since  lim^ |^n  (x)| = 00, limfe 0 (s^  (x)) = 00.  This together with (17) shows

that

lim n~ \t    (x)| =00
k     fe     "k

and we thus arrive at a contradiction.  From (16) we therefore see that

lim 72-2y    (22 (x))u (x) = 00
' c-       n n

72 72

on a subset of G of nonzero measure.  By Fatou's lemma, this contradicts

(12).

(c)  The mapping  T( (O < e < eQ) of BK(0)  into itself is relatively

compact.  In fact, by an argument similar to that in the last step, we see
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that for all v £ BK(0), ||Tf(f)||2 < C.  Since the imbedding of H2(G)  into

H (G) is compact, we deduce that the closure of  TÁB„(O)) is compact.

Thus by the Schauder fixed point theorem [4,p. 105], T   (O < e < £„) has

a fixed point in  BK(0).

II.   Passing to the limit as  ( [ 0.  Using the same argument as in Step

1(b) above (take the inner product in  L2(G)  of (7) with  22  and then with

yAu)), we see that there is a constant  C  independent of t   such that a solu-

tion  u    of (7) and (8) satisfies

KII2<C,    llyfK)Ho<c      (0<e<e0).

Since the mapping  22—»221     of f/Hc)  onto H'2{Y)C L (Y)  is continuous,

we can extract a subsequence  \ u    j  with the following properties

22      converges weakly to  u in  H (G),
n

Lu      converges weakly to Lu in L  (G),
77

22      converges strongly to  ¡2 in  H (G),
72

y   (u    \ converges weakly to  -Lu + / in   L  (G),converges weaiciy to  -i^u + /  in  l
"72       "72'

du   Idv converges weakly to du/dv in L (D
c

(i.e.  ß   (u       )  converges weakly to -du/dv in  L  (Y)),
77 72|r

22 converges strongly to  «t    in  L (Y).
72 |r |r

From a property of Yosida approximations  [8, Lemma 4.5],  it  then follows

that

u£D(y),      -Lu + I £y(u);        m    £ D(ß),     -du/dv £ ß(u^)

and the proof is complete.

From the proposition we deduce the following

Corollary.  Suppose that the conditions in the proposition are satisfied.

Then for any k^ >  0, k2 > 0, the boundary value problem

Lu + y{u) 3 f,       -k^u - k2du/dv £ ß(ui   )

has a solution u £ H2ÍG).

Proof.   The boundary condition can be written as

-du/dv £ kxk~lu + k~lß{u\).

On the other hand, it can be verified that  k.kZlI + k~  ß  is a maximal
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monotone mapping in  R, using the well-known fact that a monotone mapping

U  in a Hubert space  H  is maximal if and only if for all À > 0  the range of

I + \U is the whole of H (see e.g. [2]).
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