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LOCAL EUCLIDEAN FOUR-POINT PROPERTIES WHICH

CHARACTERIZE INNER-PRODUCT SPACES

J. E. VALENTINE AND S. G. WAYMENT

ABSTRACT.     Let M  be a complete, convex, externally convex metric

space.   We show M  is an inner-product space if and only if for each point  t

oí M, M  contains a sphere S    which has the euclidean queasy, feeble or

weak four-point property.

1.   Introduction.   The purpose of this paper is to give generalizations

of the Blumenthal and Day characterizations of inner-product spaces among

the class of complete, convex, externally convex metric spaces.   For defini-

tions and a detailed study of these concepts, see [3].   A metric space  M has

the euclidean weak four-point property provided each quadruple p, q, r, s oí

points of M  fot which  pq + qr = pr is congruently (isometrically) embeddable

in the euclidean plan  E2.   In [3], Blumenthal showed that the euclidean weak

four-point property characterizes inner-product spaces among the class of

complete, convex, externally convex metric spaces.   Blumenthal [4] intro-

duced the euclidean feeble four-point property; namely each quadruple of points

p, q, r, s of M  fot which pq + qr = pr and pq = qr is congruently embeddable

in the euclidean plane  E2.   He then showed that in a complete, convex, ex-

ternally convex metric space the euclidean feeble four-point property implies

the euclidean weak four-point property, thus obtaining another characteriza-

tion of inner-product spaces.   Day [6] showed the weaker condition, the euclid-

ean  queasy  four-point property; for each pair of distinct points  p, r of M

there is a point  q, p 4 q 4 r,  between  p and  r such that for each point s  of

M the quadruple p, q, r, s is congruently embeddable in   E2 , characterizes

inner-product  spaces  among  the  class  of  complete,   externally  convex

metric spaces.   We will say a metric space has the local euclidean weak,

feeble, queasy four-point property, respectively, provided for each point  t

of the space, there is a spherical neighborhood S    with center t,  such that
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S   has the euclidean weak, feeble, or queasy four-point property.   The main

result of this paper is that a complete, convex, externally convex metric space

is an inner-product space if and only if it has one of the aforementioned local

four-point properties.   It should be noted as in Day's work [6], that if the

space has two distinct points, then the local euclidean queasy four-point

property already assures the space is locally convex.   We should also mention

that Busemann L5, p. 5l] asserts that every G-space which satisfies a local

Pasch axiom has the local euclidean weak four-point property.   Our main re-

sult shows this is false; for the two-dimensional Banach spaces with unique

lines are all G-spaces which satisfy Pasch's axiom, but only one of them pos-

sesses the local euclidean weak four-point property.

Throughout this paper,  M  will denote a complete, convex, externally con-

vex metric space.   Also, for convenience, we will denote the local euclidean

queasy four-point property, the local euclidean feeble four-point property, and

the local euclidean weak four-point property, respectively by   l.e.q.f.p.p.,

l.e.f.f.p.p. and l.e.w.f.p.p.

The following theorem, which is found in Busemann [5, p. 30] is useful

in the sequel.

Theorem B.   // Sip; p/2)  is a sphere with center p and radius p/2  and

if x, y are elements of S(p; p/2)  then any segment with endpoints x and y

is contained in S(p; p).

2.   Some immediate consequences of l.e.q.f.p.p.   It is easily seen that if

M has l.e.w.f.p.p.  then  M has l.e.f.f.p.p.,  which in turn implies  M has

l.e.q.f.p.p.   We first show l.e.q.f.p.p. implies that distinct points  a  and  b,

with distance ab sufficiently small, lie on a unique metric segment.   That

l.e.q.f.p.p. implies l.e.w.f.p.p. then follows quite easily.   Thus we show the

three local properties are equivalent.

Theorem 2.1.    // t  is an element of M  and if S(t; p) has the euclidean

queasy four-point property, then each pair of distinct points in S(t; p/2) are

endpoints of exactly one metric segment.

Proof.   Since  M  is complete and convex, distinct points  a, b in S(t; p/2)

are endpoints of at least one segment and by Theorem B, each such segment

is contained in  S(t; p).   Suppose  a, b ate endpoints of at least two segments;

say Sj(a, b)  and S Aa, b).    Let  c be a point of Sj(a, b) — SAa, b).   In tra-

versing  S Aa, b)  from  c to  a,   a first point  d of  S Aa, b)   is encountered,

while a first point  e oí S Aa, b)  is similarly met in traversing  S ^(a, b) from

c to   b.   Thus the subsegments  S {(d, e) and S Ad, e)  of S Aa, b) and



LOCAL EUCLIDEAN FOUR-POINT PROPERTIES 339

S2(a, b), respectively, have only the endpoints d, e in common. The euclid-

ean queasy four-point property implies the existence of a point g between

d and e such that for each point s in S(t; p), d, e, g, s, is congruent to a

quadruple of points of E2. Since c y[d, e) and S Ad, e) have only d, e in

common, g is not on one of the segments; say S Ad, e). For the particular

point f on S Ad, e) such that df = dg and ef = eg, the quadruple d, e, f, g

is congruent to a quadruple of E2. This is impossible. Therefore each pair

of points of S(t; p/2) ate endpoints of exactly one segment.

Theorem 2.2.   // t is an element of M and if S(t; p) has the euclidean

queasy four-point property, then S(t; p/2) has the euclidean weak four-point

property.

Proof.   Let  p, r be points of S(t;p/2) and let Q(p, r)  be the set of points

x between  p and  r for which the quadruple p, r, x, s is congruently embed-

dable in  E2,  for each point s  in  S(t;p/2).   It follows from the continuity of

the metric that Q(p, r) is closed and hence complete.   Moreover, if x, y ate

points of Q(p, r),  then for each point s  in S(t; p/2)  each of the quadruples

p, r, x, s,  and p, r, y, s is congruently embeddable in  E2.   Applying the

euclidean law of cosines to the angle with vertex p and sides  S(p, s) and

S(p, r), using the points  p, r, s and then  p, x, s   we have

(ps2 + pr2 - rs2)/2ps ■ pr = (ps2 + px2 - sx2)/2ps • px.

Similarly for the quadruple  p, r, y, s we have

(ps2 + pr2 - rs2)/2ps ■ pr = (ps2 + py2 - sy2)/2ps • py.

It now follows that p, s, x, y is congruently embeddable in  E2.   In exactly

the same manner it is seen that  r, s, x, y  is congruently embeddable in   E2.

Applying the euclidean queasy four-point property to the points  x, y,  we ob-

tain a point   z   such that for each  s in  S(t; p/2), x, y, z, 5  is congruently

embeddable in  E v   Use of the above techniques shows  p, r, z, s  is congru-

ently embeddable in  E2.   Thus  Q(p, r)  is a complete, convex metric space

and consequently contains a segment with endpoints  p and  r. By Theorem 2.1

there is only one such segment.   It now follows that each quadruple of points

of S(t;p/2) which contains a linear triple is congruently embeddable in  E,;

that is S(t;p/2) has the euclidean weak four-point property.

We may now conclude that M has one of the local euclidean four-point

properties if and only if it has all of them.

3.   Uniqueness of lines.   In the preceding section we proved l.e.q.f.p.p.

implies unique segments, locally.   It is now possible to extend this globally
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and show that M has a unique metric line through each pair of its distinct

points.

Theorem 3.1.   // M has l.e.w.f.p.p. and if a,b are distinct points of M,

then a,b are endpoints of exactly one segment.

Proof.   If M  contains distinct points  a, b which are endpoints of two

distinct segments, then as in the proof of Theorem 2.1, distinct points  d, e

and segments S A\d, e) and S Ad, e) can be found such that S ^(d, e) and

S2(d, e) have only the endpoints  d, e in common.   Since  M  is externally

convex the segment S Ad, e)  can be prolonged through   e to a point  / to ob-

tain a segment S ̂ (d, f) containing e and such that df = 2de.   Since M has

l.e.w.f.p.p. there is a sphere S(e;p) with center  e  and radius  p which has

the euclidean weak four-point property.   Since  e is between  d and /,   e is

between  / and each point that is between  d and  e.   Let p, q denote points

on  S^d, e) and S2(d, e),  respectively, such that  pe = qe = p/A and let  r

denote the point on S ^(d, f)  such that erf holds and er = p/A.   Then the

quadruple p, q, r, e is congruently embeddable in  E,  contrary to uniqueness

of lines in  E2.   Thus segments are unique.

Theorem 3.2.   // M  has l.e.w.f.p.p., then metric segments admit unique

prolongations.

Proof.   Since M  is externally convex, segments admit prolongations.   If

zVl  contained a segment with endpoints  a, b which admitted two prolongations,

then  M  would contain points  a, b, c, d with  b the midpoint of a and  c and

b the midpoint of a and d.   Applying l.e.w.f.p.p., we obtain a sphere S(b; p)

which has the euclidean weak four-point property.   We can now find points

p, q, r,  such that pb - qb = rb = p/2  and such that  b is the midpoint of p

and  r and also of a and  r.   Now p, q, r, b is congruently embeddable in  £,

contradicting the uniqueness of lines in  E2.

Combining the results of Theorems 3.1 and 3.2 we have the following

result.

Theorem 3.3.   // M has l.e.w.f.p.p., then each pair of distinct points of

M  lie on exactly one metric line.

Since the local properties are equivalent, Theorem 3.3 remains valid if

l.e.w.f.p.p. is replaced by l.e.f.f.p.p. or l.e.q.f.p.p.

4. The characterization of zVl. Since a local four-point property in a

normed linear space is global, it suffices to show M is a Banach space.

We show the Banach nature of M by showing l.e.w.f.p.p. implies that for
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any three points  p, q, r oí M,  if a , r   denote the respective midpoints of

p and  q and p and  r,  then  q r  = qr/2.   This will then complete our charac-

terization.   For Andalafte and Blumenthal [l] called the latter property the

Young postulate and proved a complete metric space with a unique line

through each pair of its distinct points is a Banach space if and only if it

satisfies the Young postulate.   In § 3, we have already shown the uniqueness

of lines.

Theorem 41.   Let t be an element of M and suppose S(t; p) has the

euclidean weak four-point property.   If p, q, r are points in S(t; p/2) and if

q , r   are points on the lines joining p and a  and p and r,   respectively,

such that pq   = Xpq and pr  = Xpr,  and if q , r   lie in S(t; p/2),   then  q r  =

Xqr.

Proof.   Since p, q, q    are linear, the quadruple p, a , a, r is congruently

embeddable in   E2.   Thus using the euclidean law of cosines for the cosine

of the angle with vertex p  and sides  S(p, q) and S(p, r),  we obtain the same

result whether using p, q, r or p, a , r.   Similarly, the quadruple p, q , r , r

is congruently embeddable in  £:2,   so the cosine law gives the same result

for the angle at p when evaluating it with the points  p, a , r or p, a , r .

Equality of the evaluation by the law of cosines in the first and last triangles

yields  q r  = Xqr.

Corollary 4.2.   Suppose S(t; p) has the euclidean weak four-point prop-

erty and p, q, r are elements of S(t; p/2).   For each X, 0 < X < 1  and for

each point s  between a aTza" r if a , r   are between p and q and p  and r,

respectively, with pq   = Xpq, pr  = Xpr,   then there is a point s    between q

and r   that is also between p and s and ps   = Xps.

Proof.   Since  p, q, r lie in S(t; p/2),  the segments joining each pair of

points lie in  S(t; p),  by Theorem B.   Let s    be the point on  S(p, s)  such

that ps   = Xps.   Then by Theorem 4.1,   q s   = Xqs,  s r  = Xrs,  and  a r  = Xqr.

The result now follows.

Theorem 4.3.   // M has l.e.w.f.p.p.,  p, x, y are points of M,  and if

x , y    are the midpoints of p and x and p  and y,   respectively, then x y   =

xy/2.

Proof.   Since M has l.e.w.f.p.p., a positive number p exists such that

S(p; p) has the euclidean weak four-point property.   Let  A = \Xy 0|   for each

p, 0 < p < X,  for all  s, t in  S(p; p/A) whenever s , t   ate points on the lines

joining p and  s and  p  and  /,  respectively, such that (i) if ps   = p. ps and

pt   =p.pt,  then  st   =p-st,  and (ii) for each point  ttz  between  s and  t,
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there is a point m    between  s    and  t   that satisfies the same betweeness

relation as  p, s, s   and  pu   = p • pm  and  m s   -p-ms\.   If A is not bounded

above then the theorem follows.   By way of contradiction, suppose A is

bounded above.   By Theorem 4.1 and Corollary 4.2,  A4 0.   Thus  sup A ex-

ists, say equals   /.   It follows from the continuity of the metric that  / is an

element of A.   Let  a, r he any points of S(p; p/A)  and let u, v be points on

the rays of p and a and p and r, respectively, such that pu = / • pq and pv = / • pr.

For each point w on the segment S(u, v),   there is a sphere S(w; p   )  which has

the euclidean weak four-point property.   Since  S(u, v)  is compact and the

collection of spheres  S(w; p/2), w on S(u, v)  covers S(u, v),  there is a

finite subcollection which covers  S(u, v),  say S^(w^; pj/2), S2(w2; p2/2),

• « •, 5  (w  ; p 42)o   Without loss of generality suppose  u 4 w ■ 4 v (i - 1, 2,

• ••,«) and assume www.  2 holds  (i = 1, 2, • • •, 72 - 2).   Note uw yW 2

and w  _.w  _2v also hold.   Let  s   = u, s.*¡w.t s2  a point between  w^

and w2 that is in both  S Aw.; p ./2)  and SAw2; p2/2), s, = w 2, s.  a point

between  w2  and ttz,   that is in both  S2(w2; p2/2)  and S Aw,; pj2), and so

forth.   We thus obtain a finite collection of points   \s   S of S(u, v) with three

points in the same sphere S(w,; pA and s ,s .   ,s .  2  holds  z = 1, s, • • • , m —

2.    Consider the  rays  ps{,     i - 0, 1, 2, • • • , m.   It is easily seen that a

positive number cl  exists such that the points  s .   and s .    on the ray of ps .

for which  s . s ,s .    subsists and ps .   = a • ps . and ps . = a • ps .   lie in
zzz rz r   1 r   1 r   l

S(w.; p.) whenever s . does.   Since  s.    is between  p  and   s.,  it follows
j   '! 1 i r 1'

from Corollary 4.2 that the  s .   (z = 0, 1, • • •, ttz) are collinear.   Moreover, the

points  p, si , s{   ,,sjt s.  j  are congruently embeddable in  E2  since the mu-

tual distances determined by them are just a constant multiple of the distan-

ces of corresponding points in  S(p; p/2).   Easy applications of the euclidean

weak four-point property using the linear triple  s . , s., s .   and one of  s . ,.,

s .  ,, S.,,   and the linear triple s.   .. S ■   ., s ... and one of s . , s ., s .    shows
z + i'     z+l t- i +i>     Z+l7     I +1 l '     l'     l

the above congruent embedding can be extended to see that p, s . , s .   ,, s .,

z + l' si ' si+l  are congruently embeddable in  E2.   Since  s ., s .   ., s.  2, s! ,

si+l' si+2' si ' Si+V si+2  lie ^n tne same Sjiwk' P/2)>  lt follows that

s'ísi+l s"+2 h°lds  («"0, 1, •••jTtz).   Since  pu = a.ps'^, a < 1;  and pu =

l-pq,  we have  psj = (l/a)pq and ps'^ = (l/a)pr and, from the above,  s"s"

= il/°)qr.   It is clear from the above construction that if  I < p < Ifo. and

a , r   are points on the segments Sip; s'^) and S(p; s")  with  pq  = p. pq,

pr  =u-pr,  then  q'r' = p-qr.   This contradicts   I = sup A.   Therefore  A is

not bounded above; the proof is complete.

Applying the result of Andalafte and Blumenthal [l] we now have the

following result.

s
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Theorem 4.4.   // M  has l.e.w.f.p.p., then M  is a Banach space.

The following theorem follows from Theorems 2.2 and 4.4.

Theorem 4.5.   A complete, convex, externally convex metric space is

an inner-product space if and only if it has the local euclidean weak, feeble,

or queasy four-point property.

The authors [7] gave a local characterization of inner-product spaces

among the class of normed linear spaces.   So far as they are aware, the pres-

ent paper gives  the only local characterizations of inner-product spaces

among a certain class of metric spaces.   The proof given here makes strong

use of the Young postulate.   It would be nice to have a proof that is inde-

pendent of that postulate, thus removing the necessity of first showing that

local properties imply the metric space is a Banach space.   If such a proof

were obtained, it would probably be possible to obtain similar local charac-

terizations of hyberbolic and spherical spaces.   In [2] Andalafte and Valen-

tine characterized euclidean and hyperbolic spaces among a certain class of

metric spaces using intrinsic four-point properties.   If such a strong use of

the Young postulate could be avoided in the present work, it is conceivable

that local intrinsic four-point properties would also effect a characterization

of those spaces.
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