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FIRST CATEGORY FUNCTION SPACES UNDER

THE TOPOLOGY OF POINTWISE CONVERGENCE

R. A. McCOY

ABSTRACT. A large class of function spaces, under the topology of point-

wise convergence, are shown to be of first category.

The question as to when a space of continuous functions is of first

category (i.e., can be written as a countable union of nowhere dense sub-

sets) seems to be relatively unanswered.  When the topology on the function

space is the supremum metric topology, then if the range space is completely

metrizable, so is the function space.  Thus by the Baire category theorem, there

is a large class of function spaces having the supremum metric topology

which are Baire spaces (i.e., no open subspace is of first category).  How-

ever, an example is given in L 4] of a metrizable Baire space   Y such that the

space of continuous functions from  I,  the closed unit interval, into Y, under

the supremum metric topology, is of first category.  If the domain space is

compact, the supremum metric topology agrees with the compact-open

topology on the function space, so there is also a large class of function

spaces having the compact-open topology which are Baire spaces.  However,

the situation changes dramatically when the topology of pointwise converg-

ence is imposed on the function spaces.  Under this topology, the function

spaces are of first category for most nonpathological domain and range

spaces.   For example, it will follow from the Theorem in this paper that the

space of real-valued continuous functions on   /,  with the topology of point-

wise convergence, is of first category.

The notation   C (X,  Y) will stand for the space of all continuous

functions from X into   Y under the topology of pointwise convergence.

This topology is generated by the base

$ = I H L*;.  V.]|x. e X and  V. is open in   YK
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where each  Lx, V] = {f£ CpiX, Y) | fix) £ V\.  It can also be considered as

the topology inherited from the product topology, considering   C (X,  Y)   as a

subspace of ^xeX Yx,  where each   Y    is a copy of   Y.

Because of the nature of the topology on  C (X,  y),  it is much easier to

work with basic open sets rather than arbitrary open  sets.   For this reason

we shall use a characterization of spaces of first category given in [5].

Basically, the proof of this characterization is due to Oxtoby [6],  Similar

characterizations can be found for Baire spaces in [2] and L3J•

If X is a topological space, a pseudo-base for X is a collection of

nonempty open subsets of X such that each nonempty open subset of X

contains a member of this collection.

Let ?  be a pseudo-base for  X.  Define   S[X, 9] = {/: 9 -» 9 | fill) C U

for every   U £9\.  If   Ue9  and  f,g£S[X,9], then define

iu. f, g)l = giu),

and for   i > 1,

ÍfÜU. f, £>,_,),     if i is even,

gi<U, f. g\_¿,    if i is odd.

Proposition.   The following are equivalent:

(i) X  is of first category.

(ii)  For every pseudo-base J   for X,   there exists an f £ SIX, j]   such

that for every  U £ J   and g £ S[X, 9],   l)00, (U, f, g). = 0.

(iii)  There exists a pseudo-base 9  for X and an f £ S[X, j]   such that

for every   U £9   and g £ S[X, 9], f\°°=l (V., f, g){ = 0.

We shall call space   X  completely Hausdorff with respect to   Y if for

every finite set  \xy ■ ■ ■ , x  \ of distinct points of   X and every finite set

\V, , • • • , V i  of nonempty open subsets of   Y,  there exists a continuous

function  f:  X —> Y such that  fix) £ V. fot every   i = 1, ■ ■ ■ , n.  Note that

X is completely Hausdorff with respect to the reals if and only if it is

completely Hausdorff in the usual sense.

Theorem.   Let X  contain a convergent sequence which is infinite as a

subset of X,   and let  X be completely Hausdorff with respect to  Y.  If Y

satisfies any of the following three conditions, then the space  C iX,  Y)   is

of first category.

(i)   There exist two nonempty open subsets of Y  with disjoint closures.
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(ii)   There exists a sequence \W.} of nonempty open subsets of Y

such that, for each sequence \y.\ in Y with y.£ W.  for every  i,  no subse-

quence of \y .\ converges.

(Hi)   Y  is of first category.

Proof.   Let  \t.\ be a convergent sequence in   X which is infinite as a

subset of  X.  To prove part (i), let   U and   V be open subsets of   Y with

disjoint closures.   Let  a> denote the set of positive integers, and let R =

l/VCuj | either  N is finite or cu\/V is finitei.  Now R is countable, so let

i/V^i be an indexing of R on tu.   For each   n,   i£a>, let   Wl = U if  i£ N^  and

let   W^ = V if  i 4 Nn.  For each  n £ to,  define   ^n = U^l^i' W*J> which is

a dense open subset of  C (X, Y) since   X is completely Hausdorff with re-

spect to   Y. Now suppose /ef)0"-!* •  Let M, = {z e a> \ fit) e U\, and let

M2 = \i£ cu I /G.) e V\.  Suppose that  M1   is finite, so that  oAzMj = zVfe for

some   ¿ecu. Now  f£ W      so that for some   ¿ecu,  f(t.)£W,.  If  z'eMp  then

fit) £ V,  so that   i 4 My  But if  i 4 Mp  then  fit) e U,   so that   i £ My

Either way is a contradiction, so that  Alj  cannot be finite.  Similarly   M2

cannot be finite.   But then  {/(/.)} could not converge, which contradicts the

continuity of   f.   Therefore O00 . W   = 0,  so that   CAX, Y) must be of first
' ' '   ' n=l     n       ^ P

category in this case.

To prove part (ii), let  lW.| be a sequence of nonempty open subsets of

Y  such that, for each sequence  [y.i in   Y with  y.e W. for every   i £ tu,  no

subsequence of  iy-S converges.  Now if i> is the base for  CAX, Y) defined

above, then each element of 9> is nonempty since   X is completely Haus-

dorff  with respect to   Y.  Hence 9> is a pseudo-base for  G AX, Y). Define

f£ S[C (X, Y), $] as follows.  Let  V = f|"=i E*f, V.]£9> be arbitrary.  Let

z?z(V) denote the smallest positive integer such that   tmi\/\ 4 \x^, • • • , x  }.

Now let  x   ., = t   „,, and   V  +1 = W   M/v  Then define  fiV) = f)"*}\jc„ V.],
n + l m{V ) n + i m\V ) ' •   "z = l      V     i

which is clearly contained in  V. With / thus defined, let   U £ 9>  and  g 6

S[C(X, Y),9>],   For each   ¿ecu    let  x. = z1   ,,,,  ,    . ^.  Since \x .\ isa

subsequence of  \t.\,  it is convergent.   But if  <f>   were an element of

n°ll^' /' g)' then <plxA£ wm/(u,j,g)2-_l) f°r every  z£ ù)- Then by choice

of  \W.}, {cpix.)\   would not converge, which contradicts the continuity  of  c/>.

Thus  O^iW, f, g){ = 0, so that   C (X, Y) must be of first category by the

Proposition.

Part (iii) follows from considering   G (X, Y) to be a subspace of

"xeX Y ,  which is dense since   X is completely Hausdorff with respect to   Y,

and using the fact that a dense subspace of a space of first category is of

first category.
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Corollary 1.   Let  X be a completely Hausdorff space which contains

a convergent sequence which is infinite as a subset of X,   and let   Y  be a

nondegenerate pathwise connected Hausdorff space.   Then C (X, Y)  is of

first category.

Corollary 2.   // X  is a nondegenerate pathwise connected completely

Hausdorff space, and   Y  is a nondegenerate locally pathwise connected

Hausdorff space, then  C AX, Y)  is of first category.

The first corollary follows from the fact that a completely Hausdorff

space is completely Hausdorff with respect to a pathwise connected space,

and the second corollary follows from the first and the fact that the path-

components of   Y are open and from the Banach category theorem, which says

that the union of any family of open subspaces of first category is of first

category.

The three concepts given in statements (i), (ii), and (iii) of the Theorem

overlap, but no two of them contain the third.  Note that every sequentially

compact space fails to satisfy (ii), and every quasiregular space which is

not a Baire space does satisfy (ii).   A closed interval is an example of a

space satisfying (i) but not (ii) or (iii).  For an example of a space satisfying

(ii) but not (i) or (iii), take   X to be the reals with topology generated by the

usual open sets not containing   o along with sets containing   o and having

countable complements.   Finally, a countably infinite set with the cofinite

topology satisfies (iii) but not (i) or (ii).
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