
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 50, July 1975

A NEW DIMENSION FUNCTION

J. M. A ARTS

ABSTRACT.   A new inductive dimension function, Hind, is defined for

hereditarily normal spaces.  The countable and locally finite sum theorems

for Hind are proved for hereditarily normal spaces.   It is shown that Hind =

Ind  on the class of totally normal spaces.

1. Introduction.   The finite sum theorem for the strong inductive dimen-

sion  Ind does not hold in general for compact Hausdorff spaces.  The counter-

example is due to Lokucievskii [A], [5, Example 16—6].   It is an open ques-

tion whether the finite sum theorem holds for hereditarily normal spaces. The

positive results which are due to Dowker are as follows.   In the class of

totally normal spaces the countable sum theorem, the open subset theorem

and the subset theorem for Ind  hold [l], [5, §11].   There is also a locally

finite sum theorem for  Ind  in totally normal spaces [3], [5, Lemma 25-3].

The proofs of these results are strongly interrelated.

In this note we introduce a new inductive dimension function, Hind, for

hereditarily normal spaces for which the sum theorems can be proved without

relying on an open subset theorem. These theorems are valid in the class of

hereditarily normal spaces and the proofs are straightforward. It is to be

noted that the (open) subset theorem for Ind as well as Hind does not hold in

the class of hereditarily normal spaces. The counterexample which is due to

Filippov [2] will be discussed in §2.

The dimension function Hind agrees with Ind on the class of totally nor-

mal spaces.   Also, Hind X = Ind X for every hereditarily normal space  X

with Hind X < 1.  So by the defining of Hind we have singled out the property

which is crucial for the sum theorems of the inductive dimension.

It is an open question whether Hind and Ind agree on the class of heredi-

tarily normal spaces.  This question is related to that mentioned above.  A

negative answer to the former question provides a negative answer to the latter.

2. Definition of Hind.   The huge inductive dimension Hind is defined for

every hereditarily normal space  X  as follows:
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(1) Hind X = -1   if and only if X = 0;

(2) For each integer  ?z > 0, Hind X < n provided that for each pair of

closed subsets  F  and  G  with  Hind(F C\ G) < n — 1  there is a pair of closed

subsets   K and  L  such that  F\G C k\l, g\f C l\k, K u L = X  and

HindU nL) < 77 - 1.

Hind X = 7z, 77 = 0, 1, 2, • • • , <x>, ate defined as usual.

Observe that in (2) the set   K Pi L  separates   F  \G and  G\F in  X.

This proves the "only if "-part of the following proposition.

Proposition 1. For each integer n > 0, Hind X < n if and only if for each

pair of closed subsets F and G with Hind (F C\ G) < n - 1 there is a closed

subset S such that  F\G  and G\F are separated by S and Hind S < n — 1.

Proof.  The "if'-part is proved as follows.  Let  F and  G be closed sub-

sets with Hind(F O G) < n - 1   and let  S be a closed subset which separates

F\G  and  g\f and which has  Hind < n - 1.  Then  x\s = U U V where   U

and  V ate disjoint open sets containing  F\G and  G\F respectively.  Then

K = U U S  and  L = V u S  satisfy the conditions required in the definition of

Hind X < 77.

Corollary 1.   Let n = - 1  or 0.  Hind X = n if and only if Ind X = n for

every hereditarily normal space X.

The easy inductive proofs of the following propositions are omitted.

Proposition 2.   Ind < Hind  otz the class of hereditarily normal spaces.

Proposition 3.   Let  C  be a closed subset of a hereditarily normal space

X.   Then Hind C < Hind X.

From Corollary 1 and Proposition 2 it follows that Hind X = Ind X for

every hereditarily normal space  X with  Hind X < 1.

Example 1.   Filippov [2] has given an example of a hereditarily normal

and zero-dimensional space   X  which contains subspaces  X , n = 1, 2, • • • ,

with Ind X    =72.   The construction of the example is based on the assump-

tion of the existence of a Suslin tree.   In view of Corollary 1 and Proposition

2 the same example shows the failure of the subset theorem for Hind in the

class of hereditarily normal spaces.  It is to be observed that the open sub-

set theorem and the subset theorem for Ind are equivalent in the class of

hereditarily normal spaces [l], [5, §11-2].  So there is also no open subset

theorem for Hind in the class of hereditarily normal spaces.
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3. The sum theorems.  The proofs of the sum theorems are based on the

following lemmas.

Lemma 1.   Let  F  and G  be closed subsets of a hereditarily normal

space  X.   Then in X there exist closed neighborhoods   U and V  of F\G

and G\F, respectively, such that   U C\ V = F n G.

Proof.   F\G and  G\F  ate disjoint closed subsets of the normal sub-

space   X. = X\(F O G).  So in  X.   there are disjoint closed neighborhoods

U.   and  V.   of  F\G and  G\F respectively.   As  X.   is open,  L/j  and   V. are

also neighborhoods in  X.   Now let   U = F U Ux  and   V = G uV¡. As clx Ul

C ijj U (F n G), U is closed in  X.   Similarly  V  is closed.

U r\V = F DG, because   U { D G C F n G  and also   V , n F C F n G.

Lemma 2.   Let  F and G  be closed subsets of a hereditarily normal

space X and let   Y be a subset of X such that Z = F U G U V  is closed in

X.   Suppose Hind Y <n and Hind(F C\ G n Y) < n - 1.   Then there exist

closed subsets  K and L  of X and a closed subset S  of  Y such that

(1) f\g C k\l  and g\f C l\K;

(2) K\J L = Z;

(3) K n L = (F n G) U 5;   £772^

(4) Hind S<«-1.

Proof.   By Lemma 1 in  X there are closed neighborhoods   U and   V oí

FAG and  G\F, respectively, such that   U Cl V = F C\ G.   By virtue of Prop-

osition 1 there is a partition  \Q, R, S\ oí  Y, where  Q and  R  ate open and S

is closed in   Y, such that  (u\v) n Y C Q, (v\u) n Y CR  and  Hind S < n-1.

Now let  K = F U Q \jS and  L = G U R ijJ.   First observe that  v\fJ  is a

neighborhood of G\f.   As  (ÇuS)n (v\u) = 0, dx(Q U S) n (g\f) = 0

Hence  cly(Q U S) C K, because  Z  is closed.  It follows that  K is closed in

X.  Similarly, L  is closed.  We also have  (QuS)nGCFnG  and, similarly,

(RuS)nFCCnF.  So  K n L = (F O G) U S.  Clearly Sfi(FuG)CFnG,

It follows that   K\L 3 F\(fi n L) = F\G.   Now it is easily seen that (1)—(4)

are satisfied.

Remark 1.   If in Lemma 2 we suppose that  Ind Y < n and  F D G n Y = 0

(instead of Hind Y < tz and Hind(F Pi G D Y) < n — Í), in the same way it

can be shown that there exist closed subsets  K and  L  of X and a closed

subset  S of   Y satisfying (1), (2), (3) and Ind S <n - 1.

We now prove the countable sum theorem.

Theorem 1.   Let {X . | i = 1, 2, • • • }  be a countable closed cover of the
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hereditarily normal space  X, such that Hind X . < n, z = I, 2, • • • .   Then

Hind X < 72.

Proof.  The proof is by induction on  tz.   The theorem is obvious for

72 = — 1.  Suppose it has been proved for  72 - 1.  Let  KQ  and  LQ be closed

subsets of X such that for D. = K    n L     we have Hind D. < w — 1.  Induc-

tively on  z we shall define closed subsets  D ., K. and  L . of  X, z = 1, 2, • • • ,

such that for each  z :

(1) K.^V.^ Cintx K.V. and  L._1\k._1 C intx L.\k.;

(2) X. C K. u L. ;

(3) 0; = ^nL;

(4) Df_j C D.;   and

(5) Hind D.<n - 1.

Suppose D ., K. and L . have already been defined for / = 0, 1, • • • , z - 1

satisfying (1)—(5). In view of (3) and Lemma 1 there are closed neighborhoods

U and   V of K._.\L._.   and  L ._ .\K ._,, respectively, such that   U n V =

By applying Lemma 2 (with F, G and Y replaced by U, V and X . re-

spectively) we get closed sets K., L. and S such that, if we define D. =

K. n L ., then (1)—(3) above are satisfied, D . = D .   , U S and  Hind S < n — 1.ZZ' \    '      \    / y I I— 1 —

Clearly (4) is satisfied and (5) follows from the induction hypothesis.

Finally let  U = |J|K.\l.|z = 1, 2, • • • j, V = \J{L¡XK.\i= I. 2» - - - |

and  D = U|D.|z = l, 2,-«>].   Then  !t/, V, D\ is a partition of X by virtue

of (1)—(4).   U and  V are open in view of (1).  Hence  D is closed.  By the

induction hypothesis and (5) we get Hind D < n — 1.   By Proposition 1 we

have  Hind X <n, since   Kq\Lq C U and  LQ\K0 C V  in view of (1).

The locally finite sum theorem is as follows.

Theorem 2.   Lez*  {X  | a £ A\ be a locally finite closed cover of a heredi-

tarily normal space X, such that Hind Xa<n for each  a £ A.   Then Hind X

< 72.

Proof.   The proof is by induction on  72.   The theorem is obvious for  72 =

— 1.  Suppose it has been proved for  72 — 1.  Let  K~  and  L„ be subsets of  X

such that for DQ = KQ n LQ we have Hind DQ < n - 1. Suppose  {Xja. e A\

is well ordered as  iXjl < a< r\.  Let Za= IJäX/jl1 <ß < ai for  1 < a< T.

Let  ZQ = 0.   By transfinite induction on  a  we shall define closed subsets

Ka, La and  Da of X  such that for all  a, ß, y < r:

(1)  Kß\Lß C Ky\Ly  and  Lß\Kß C Ly\Ky if /3 < y;
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(2) KauLa = ZaU(KQuL0);

(3) Da=KanLa;

(A)  Dß C Dy for ß < y;   and

(5)  Hind Da<n - 1.

Suppose  Do, Kß  and  L ß  have been defined for all  ß < a  satisfying

(1)—(5) for ordinals less than  a.

Let  F = \J\Kß\ ß<a\, G = \J\Lß\ ß < a\  and  T = \J^Dß\ ß < al I"

view of (1) and (3) we have  F n G = T.   Observe that  T = (KQ n LQ) U

\Dß D Xß | 1 < ß < a\, because, if x £ T\(KQ D LQ), then for the minimal

y < a with x e X      we also have  % £ D     in view of (1) and (3).  Note that

\D a H X a | ß < ai  is a locally finite closed collection.   In view of Proposi-

tion 3 and the induction hypothesis, Hind T < n — 1.  It also follows that  T

is closed.  Similarly  F  and  G  can be shown to be closed.

By applying Lemma 2 (with   Y replaced by Xa) we get closed sets  K   ,

La and  S such that, if we define  Da = KaC\ L a, then (1)—(3) above are

satisfied for ordinals less than or equal to   a, D    = T \j S and  Hind S < 72—1.

Trivially (4) holds for ordinals not exceeding  a  and (5) follows from Theo-

rem 1.

Finally let  F* = \J^KJa< ri' G* = LHLJa< A and  T* = \J\Da\a< r\.
In the same way as has been done for  F, G and  T, it is shown that  F*, G*

and  T    are closed, that  T   = F   PI G     and that Hind T    < 72 - 1.   The con-

struction ensures that  K0\LQ C F   \G    and  lA\K0 C G   \F    in view of (1).

Hence Hind X <n.

The following corollary will be useful in establishing the equality of Ind

and Hind in the class of totally normal spaces.  This result is also in [l].

Corollary 2.   Lez" the hereditarily normal space  X be the disjoint union

of a closed subspace  X.   and an open subspace  X,.   // Ind X. < 72  and

Ind X2 < 72, then Ind X < 77.

Proof.   The proof is by induction and the case  72 = — 1   is obvious. As-

sume the theorem has been proved for 72 — 1.  Let  K„  and   LQ be disjoint

closed subsets of  X.   Let  D., K.   and  L.   be constructed as in the proof of

Theorem 2 in such a way that  Ind D. < n — 1.  It is to be noted that  D. O

X2 = 0.  In view of Remark 1 by Lemma 2 (with  F, G  and   Y replaced by   K.,

Lj  and  X2  respectively) we get closed subsets   K and  L  of X  and a closed

subset  S of  X2   such that  KQ C k\l, LqC l\k, KuL=X, KnL=DuS

and Ind S < n — 1.  By the induction hypothesis  Ind(X O L) < n — 1.  It fol-

lows that Ind X < 72.
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4. Results for totally normal spaces.   Recall that a normal space  X  is

totally normal if each open subset U of X admits a cover Ö such that each V £

Ü  is a cozero-subset in  X  and  (J  is locally finite in   U.   As a cozero-subset

of  X  is an F   -subset of X, by Proposition 3 and Theorems 1 and 2 we have

that Hind U < Hind X whenever   U is an open subset of a totally normal

space  X.

Thus the following proposition has been proved.

Proposition 4.   Lez"  X be a totally normal space and let   U be an open

subset of X.   Then Hind U < Hind X.

We shall now show that Ind and Hind coincide on the class of totally

normal spaces.

Theorem 3.   Ind = Hind  otz the class of totally normal spaces.

Proof.   In view of Proposition 2 we need only prove that Hind < Ind on

the class of totally normal spaces.   By induction on  72 we shall prove the

following statement.

F(t2): If Ind X < 72, then Hind X < 72 for every totally normal space  X.

We assume E(n) has been proved for — 1, 0, • • • , n — 1 (cf. Corollary 1).

Let F and G be closed subsets of X such that Hind(F n G) < n - 1. De-

fine Y = X\(F n G). In view of the open subset theorem for Ind on the class

of totally normal spaces [5, §11-5] (see also below) Ind Y < 72. By Lemma 2

and Remark 1 there exist closed subsets K and L of X and a closed subset

S of  Y  such that

(1) F\G C k\l  and  G\F C l\K;

(2) K UL = X;

(3) K n L = (F n G) u S;

(A) lad S < n - 1.

By Corollary 2 and Proposition 3 we have  Ind(K Pi L) < n — 1. By virtue

of the induction hypothesis  Hind(K n L) < 72 - 1, whence  Hind X < 72.

Remark on the open subset theorem for Ind.   A proof of the open subset

theorem for Ind, which is used in the proof of Theorem 3, can be based on

the results in §3 and the induction hypothesis.   For completeness sake we

shall indicate such a proof.  Combined with the results of §3, this will give

a new proof of the sum theorems for Ind.

Assuming  E(n — l) we first prove

A(n): Let !Xa|a e Ai be a locally finite closed collection of totally

normal space  X  such that  tint,, X&|a e AS  is a cover of X and  Ind X    < ?2

for each  a £ A.   Then Ind X < 72.
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Proof of A(?z).  (int, cl and  B  denote the interior, closure and boundary

operator in  X.)  Let ÍFa|a € Ai be a closed cover of  X  such that  Fa C

int X   .  Suppose  F   is closed in  X and  V is an open neighborhood of  F.

Choose open subsets   W     such that  Ind ß(Wa) < 72 - 1  and  F    n F C W    C

cl Wa C V O int Xa.  By  Ein - 1)  and Theorem 2 we get  Hind Uiö^JI a e A S

< 72 - 1.  Let  W = UîWa|a.e Ai.   Then  F C If C V  and  Hind ß(W) <»- 1, be-

cause  B(W) C USßiW^la e Ai   in view of the local finiteness of the last

collection.   By Proposition 3 and  F(?2 - 1)  it follows that  Ind BÍW) < n — 1,

whence Ind X <n.

In a standard fashion from A(t2)  one can deduce

0(72):  If  U  is an open subset of a totally normal space  X with  Ind X < 72,

then Ind U <n.
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