A NONEMBEDDING THEOREM FOR ALGEBRAS

ERNEST L. STITZINGER

ABSTRACT. A certain nonembedding result has previously been shown for Lie and associative algebras. This note gives a generalization and several other consequences are noted.

Recently, D. A. Towers has considered the Frattini subalgebra of a nonassociative algebra. The concept had been previously considered for Lie and associative algebras. The purpose of the present note is to give a generalization of the nonembedding results which appear in [7] and [8] and to observe some special cases.

Let A be a nonassociative algebra over a field F. For $x \in A$, denote by L_{x} the left multiplication of A by x. For any left ideal C of A, let $E(C, A)$ $=\left\{L_{x}\right.$ restricted to C, for all $\left.x \in A\right\}$. For $a, \beta \in F$, define a new product in A by letting $a \circ b=\alpha(a b)+\beta(b a)$ for all $a, b \in A$ and denote this nonassociative algebra by $A(\alpha, \beta)$. For $\alpha, \beta, \tau, \sigma \in F$, let

$$
N(a, \beta, \tau, \sigma)=\left\{x \in A ;\left(L_{a \circ b}-\tau L_{a} L_{b}-\sigma L_{b} L_{a}\right) x=0 \text { for all } a, b \in A\right\}
$$

If $C \subseteq N(\alpha, \beta, \tau, \sigma)$, then in $E(C, A)$ define

$$
L_{a} \circ L_{b}=\tau L_{a} L_{b}+\sigma L_{b} L_{a}=L_{a \circ b} \text { for all } a, b \in A
$$

This is a well-defined product in $E(C, A)$ and the mapping $L: a \rightarrow L_{a}$ is a homomorphism from $A(\alpha, \beta)$ into $E(C, A)$. Henceforth we consider $E(C, A)$ as an algebra under this product. Now let B be an ideal in A and define $r_{1}=\left\{x \in B ; L_{y}(x)=0\right.$ for all $\left.y \in B\right\}$ and define r_{i} inductively by $r_{i}=\{x \in B$; $L_{y}(x) \in r_{i-1}$ for all $\left.y \in B\right\}$. If $\tau \neq 0$ and $r_{i} \subseteq N(\alpha, \beta, \tau, \sigma)$, then r_{i} is a left ideal of A since if $z \in r_{i}, x \in A, y \in B$, then

$$
L_{y}(x z)=\tau^{-1}\left(L_{x \circ y}-\sigma L_{x} L_{y}\right)(z) \in r_{i-1}
$$

Finally for any algebra D, let $\Phi(D)$ be the intersection of all maximal subalgebras of D if maximal subalgebras of D exist and let $\Phi(D)=D$ otherwise. If π is a homomorphism from D, then $\pi(\Phi(D)) \subseteq \Phi(\pi(D))$.

Received by the editors March 11, 1974 and, in revised form, May 2, 1974.
AMS (MOS) subject classifications (1970). Primary 17A99, 17E05.
Key words and phrases. Frattini subalgebra.

Theorem. Let B be a nonassociative algebra over a field F such that $\operatorname{dim} r_{1}=1$ and $1<\operatorname{dim} r_{2}<\infty$. Let $\alpha, \beta, \tau, \sigma \in F$ such that $\tau \neq 0$. Then there does not exist an algebra A such that B is an ideal of $A, B \subseteq \Phi(A(\alpha, \beta))$ and $r_{2} \subseteq N(\alpha, \beta, \tau, \sigma)$.

Proof. Suppose to the contrary that B is an ideal of $A, B \subseteq \Phi(A(\alpha, \beta))$ and $r_{2} \subseteq N(\alpha, \beta, \tau, \sigma)$. Let L be the mapping of A onto $E\left(r_{2}, A\right)$ given by $L: a \rightarrow L_{a}$ restricted to r_{2}. Then L is a homomorphism of $A(\alpha, \beta)$ onto $E\left(r_{2}, A\right)$ and

$$
E\left(r_{2}, B\right)=L(B) \subseteq L(\Phi(A(\alpha, \beta))) \subseteq \Phi(L(A(\alpha, \beta)))=\Phi\left(E\left(r_{2}, A\right)\right)
$$

Let z_{1}, \cdots, z_{k} be a basis for r_{2} such that z_{k} is a basis for r_{1}. For $i=1, \cdots, k-1$, let e_{i} be the linear transformation defined by

$$
e_{i}\left(z_{j}\right)= \begin{cases}\delta_{i j} z_{k} & \text { for } j=1, \cdots, k-1 \\ 0 & \text { for } j=k\end{cases}
$$

where $\delta_{i j}$ is the Kronecker delta, and let S be the vector space generated by e_{1}, \cdots, e_{k-1}. We claim that $S=E\left(r_{2}, B\right)$. Since $B r_{2} \subseteq r_{1}$ and $B r_{1}=0$, $E\left(r_{2}, B\right) \subseteq S$. For each $x \in B, L_{x}$ induces a linear transformation from r_{2} into $r_{1} \simeq F$. Therefore we consider each $L_{x}, x \in B$, as a linear functional on r_{2}. That is, $E\left(r_{2}, B\right) \subseteq\left(r_{2}\right)^{*}$ where r_{2}^{*} is the dual space of r_{2}. Consequently, $\operatorname{dim} E\left(r_{2}, B\right)=\operatorname{dim} r_{2}-\operatorname{dim} r_{2}^{B}$ where $r_{2}^{B}=\left\{z \in r_{2}, L_{x}(z)=0\right.$ for all $\left.x \in B\right\}$. Clearly $r_{2}^{B}=r_{1}$. Hence $\operatorname{dim} E\left(r_{2}, B\right)=k-1$ and $E\left(r_{2}, B\right)=S$.

We now show that S is complemented in $E\left(r_{2}, A\right)$ which contradicts $S \subseteq \Phi\left(E\left(r_{2}, A\right)\right)$. Let

$$
\begin{array}{r}
M=\left\{E \in E\left(r_{2}, A\right) ; E\left(z_{i}\right)=\sum_{j=1}^{k-1} \lambda_{i j} z_{j}, \lambda_{i j} \in F, i=1, \cdots, k-1\right. \\
\text { and } \left.E\left(z_{k}\right)=\lambda_{k} z_{k}, \lambda_{k} \in F\right\}
\end{array}
$$

M is a subalgebra of $E\left(r_{2}, A\right)$ since if $L_{x}, L_{y} \in M$, then $L_{x} \circ L_{y}=\tau L_{x} L_{y}+$ $\sigma L_{y} L_{x} \in M$. Also $M \cap S=0$. To see that $M+S=E\left(r_{2}, A\right)$, let $E \in E\left(r_{2}, A\right)$. Then ${ }^{\prime}$

$$
E\left(z_{i}\right)=\sum_{j=1}^{k-1} \lambda_{i j} z_{j}+\lambda_{i k} z_{k} \quad \text { and } \quad E\left(z_{k}\right)=\lambda_{k} z_{k}
$$

However

$$
E=E-\sum_{i=1}^{k-1} \lambda_{i k} e_{i}+\sum_{i=1}^{k-1} \lambda_{i k} e_{i}
$$

where $E-\sum_{i=1}^{k-1} \lambda_{i k} e_{i} \in M$ and $\sum_{i=1}^{k-1} \lambda_{i k} e_{i} \in S$. Hence $M+S=E\left(r_{2}, A\right)$ which is the desired contradiction.

Henceforth, B is considered to be as in the Theorem. The right nucleus, N_{r}, of a nonassociative algebra A is the set of all $z \in A$ such that $L_{x y}(z)=$ $L_{x} L_{y}(z)$ for all $x, y \in A$. That is, $N_{r}=N(1,0,1,0)$.

Corollary 1. B cannot be an ideal of any nonassociative algebra A such that $B \subseteq \Phi(A)$ and $r_{2} \subseteq N_{r}$. In particular, B cannot be an ideal contained in $\Phi(A)$ for any associative algebra A.

In a standard algebra A, the set C of all commutators is contained in the right nucleus [2].

Corollary 2. B cannot be an ideal of any standard algebra A such that $B \subseteq \Phi(A)$ and $r_{2} \subseteq C$.

The J-nucleus, J, of any Malcev algebra A is the collection of all $x \in A$ such that $\left(L_{z} L_{y}+L_{y z}-L_{y} L_{z}\right)(x)=0$ for all $y, z \in A[5]$. Then $J=$ $N(1,0,1,-1)$.

Corollary 3. B cannot be an ideal of any Malcev algebra A such that $B \subseteq \Phi(A)$ and $r_{2} \subseteq J$. In particular, B cannot be contained in $\Phi(A)$ for any Lie algebra A.

For any Malcev algebra A, an associated Lie triple system is defined by

$$
[x, y, z]=\left(2 L_{z} L_{y}-L_{y z}+L_{y} L_{z}\right)(x) \quad \text { for all } x, y, z \in A
$$

The center o^{f}.ny Lie triple system T is the set of all $x \in T$ such that $[x, y, z]=v$ for all $y, z \in T$. (See [3].) Then the center Z of the associated Lie triple system of a Malcev algebra is $N(-1,0,-1,-2)$.

Corollary 4. B cannot be an ideal of any Malcev algebra A such that $B \subseteq \Phi(A)$ and $r_{2} \subseteq Z$.

If A is left alternative of characteristic not 2 , then the associated Jordan algebra A^{+}is defined by $x \circ y=1 / 2(x y+y x)$. (See [1].) In the present notation $A^{+}=A(1 / 2,1 / 2)$. Then the following identity holds in A :

$$
L_{x \circ y}=1 / 2\left(L_{x} L_{y}+L_{y} L_{x}\right) .
$$

Hence $A=N(1 / 2,1 / 2,1 / 2,1 / 2)$.
Corollary 5. B cannot be an ideal of any left alternative algebra A such that $B \subseteq \Phi\left(A^{+}\right)$.

The following examples satisfy the conditions on B in the Theorem.
Example 1. Let A be the collection of all strictly upper triangular n by n matrices with elements from a field. Let $e_{i j}$ be the usual matrix unit. Let $B=A^{+}$, the associated Jordan algebra of A. Then $r_{1}=\left(\left(e_{1 n}\right)\right)$ and $r_{2}=$ $\left(\left(e_{1 n}, e_{1, n-1}, e_{2, n}\right)\right)$. If $n \geq 4$, then B is not associative. Also if $B=A^{-}$, the associated Lie algebra, then $r_{1}=\left(\left(e_{1 n}\right)\right)$ and $r_{2}=\left(\left(e_{1, n}, e_{1, n-1}, e_{2, n}\right)\right)$.

Example 2. Let B have basis $e, u, v, z_{1}, \cdots, z_{n}$. Define multiplication by $e^{2}=e, u e=v, e u=u,\left(z_{i}\right)^{2}=v$ and all other products between basis elements to be 0 . Then B is left alternative as is seen by a straightforward computation. However B is not right alternative since $u e^{2} \neq(u e) e$. Here r_{1} $=((v))$ and $r_{2}=\left(\left(v, z_{1}, \cdots, z_{n}\right)\right)$.

Example 3. This example is essentially taken from [5, p. 435]. Let B have basis $e_{3}, e_{i 1}, e_{i 2}, e_{i 4}, e_{i 5}$ for $i=1, \cdots, n$. Define multiplication by

$$
e_{i 1} e_{i 4}=-e_{i 4} e_{i 1}=e_{i 2}, \quad e_{i 2} e_{i 5}=-e_{i 5} e_{i 2}=e_{3} \quad \text { for } i=1, \cdots, n
$$

and all other products between basis elements to be 0 . Note that B is anticommutative and all products involving four elements are 0 . Then B is Malcev (see [5, Proposition 2.21]). B is not Lie since

$$
\left(e_{i 1} e_{i 4}\right) e_{i 5}+\left(e_{i 4} e_{i 5}\right) e_{i 1}+\left(e_{i 5} e_{i 1}\right) e_{i 4}=e_{3} .
$$

Then $r_{1}=\left(\left(e_{3}\right)\right)$ and $r_{2}=\left(\left(e_{3}, e_{i 2}, e_{i s}\right.\right.$ for $\left.\left.i=1, \cdots, n\right)\right)$.

REFERENCES

1. A. A. Albert, On right alternative algebras, Ann. of Math. (2) 50 (1949), 318328. MR 10, 503.
2. E. Kleinfeld, Standard and accessible rings, Canad. J. Math. 8 (1956), 335340. MR 17, 1180.
3. W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217-242. MR 13, 619.
4. O. Loos, Über eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen, Pacific J. Math. 18 (1966), 553-562. MR 33 \# 7385.
5. A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458. MR 26 \#1343.
6. R. D. Schafer, An introduction to nonassociative algebras, Pure and Appl. Math., vol. 22, Academic Press, New York, 1966. MR 35 \#1643.
7. E. L. Stitzinger, A nonimbedding theorem of associative algebras, Pacific J. Math. 30 (1969), 529-531. MR 40 \# 7307.
8. -_, On the Frattini subalgebra of a Lie algebra, J. London Math. Soc. (2) (1970), 429-438. MR 41 \#8484.
9. D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607

