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MALCEV ALGEBRAS WITH /2-POTENT RADICAL

ERNEST L. STITZINGER

ABSTRACT.  Let  A  be a Malcev algebra,  B  be an ideal of A  and

J2(B) = J(B, A, A)  where  J(B, A, A) is the linear subspace of  A

spanned by all elements of the form  J(x, y, z) =(xy)z +(yz)x + (zxry,

x € B,y, z e A.   For  k > 1, define  J^*l(B) = /(/*(B), A, A).   Then   B

is called  /~-potent if there exists an integer N  > 1   such that  J~(B)

= 0.   Now let   A   be a Malcev algebra over a field of characteristic   0

such that the radical   R of  A   is  /,-potent.   Then   R is complemented

by a semisimple subalgebra and all such complements are strictly con-

jugate in   A.   The proofs follow those in the Lie algebra case.

In recent years the theory of Malcev algebras has greatly advanced.

However, the status of the Wedderburn principal theorem (Levi theorem) and

accompanying Malcev-Harish-Chandra theorem does not appear to have been

settled.   The following special case, when the radical is /2-potent, would

seem to be of interest.   In this situation the treatment is much like the Lie

algebra case.   All Malcev algebras and all modules are assumed finite dimen-

sional over a field of characteristic   0.

We recall the following terminology.   Let  A  be a Malcev algebra and

define R     to be right multiplication by x.    For x, y, z £ A, let

]ix, y,  z) = ixy)z + iyz)x + izx)y = zi~ R      + [R  ,  R  ]).
' J ' ' ' xy x       y

For x, y £  A, let

A(x, y) = [Rx, R 1 - Rx      and     NÍA) = {z £ A;  zMx, y) = 0  V x, y £ A ¡.

NÍA) is called the /-nucleus of A  and is an ideal of A.    Also let

Dix, y) = [R  , R 1 + R
A x        y xy

and Dix, y) is a derivation of A.   If  B <] A, define

]\ÍB) = JÍB, A, A)    and    ]2 + 1in) = ]i]\A), A, A),       k>l.

Then  B  is called /.,-potent if there exists an integer  N > I   such that
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}2ÍB) = 0.   Note that we have slightly altered the definition of /2-potent

(see [6, p. 444]).   We prove the following.

Theorem 1.   Let A  be a Malcev algebra over a field of characteristic

0.   Suppose that the radical R  of A   is J2-potent.    Then there exists a semi-

simple subalgebra S of A  such that A = RG)S.

The usual way of showing the Wedderburn principal theorem is to prove

the case when the radical  R  is a minimal ideal of A  such that  R    =0, and

then the general case follows by a standard argument [l, p. 87] provided that

one can obtain in the general case an ideal B  of A  such that  B  is properly

contained in  R  and  ÍR/B)   = 0.   For Malcev algebras this approach is pos-

sible since  R    + JÍR, R, A) is an ideal of A  properly contained in  R   (pro-

vided  R 4 0) by [5, Theorem 1, p. 228].   Hence it suffices to prove our result

holds in the case that  R  is a minimal ideal of A.   Furthermore, if  R  is /,-

potent in A  and is a minimal ideal in  A, then JÍR, A, A) is an ideal of A

[6, Theorem 3.5Í and is properly contained in  R, hence  JÍR, A, A) = 0 and

R C NÍA).   Then the natural representation of A  on  R  is a homomorphism,

i.e., ib) [Rx, R  1 = ib)Rx    for all b e R,  x, y £ A.   Since  R2 = 0, we consider

R as an A = A/R-module and the associated representation is still a homo-

morphism.   Since  (A)   = A, A    is a supplement of R  in A  and if A    is prop-

erly contained in  A, then  A     is a complementary subalgebra of  R  and the

result holds in this case.   Hence we may assume that A    — A.   Summarizing

this paragraph we may consider the case when

(1) R  is a minimal ideal of A,

(2) ib)[R , R  1 = bR      fot all b £ R, x, y e A,
x'      y xy J

(3) A2=A.

We first consider the critical case when A   is Lie.   Then AA(x, y) C R

and RAix, y) = 0.   Consequently

(4) A(x, y)Mu, v) = 0= MxMu, v), y)

holds in A.

Following the ideas of [6], one obtains the following identity for any

Malcev algebra

[A(x, y), Mu, v)1 = MxMu, v), y) + A(x, yMu,  12))
(5)

+ 6RKx,y,uv)-6A{uv-  *y)

as follows :
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[A(x, y), Mu, v)1 = [A(x, y), Diu, v)1 - 2[A(x, y), R    1
y J uv

= MxDÍu, v), y) + A(x, yO(22, v)) - 3Muv, xy)

+ A(x, yiuv)) + My, iuv)x)

by the proof of [6, Proposition 8.14, p. 454] and [6, 2.35, p. 432].   Then

A(xD(z2, v), y) + A(x, yDiu, v)) = MxMu, v), y) + 2Mxiuv), y)

+ Mx, yMu, v)) + 2A(x, yiuv)).

Substitution then gives

[A(x, y), Mu, v)1 = MxMu, v), y) + Mx, yMu, v))

- lAiuv, xy) + 3A(x, y(z2i;)) + 3A(y, iuv)x).

Using [6, 2.32, p. 432] on the last two terms gives (5).   Now for the algebra

under consideration, from (4) and (5) we obtain the identity

(6) Rrl . = Muv, xy).
¡\x,y,uv) '

Since A    = A, (6) yields the identity

(7) tjix,  y,  z) = tMz, xy) = /(/, z, xy)

which holds in  A.

We have the usual criterion for R to have a complementary subalgebra

in A  [l, pp. 86—89].   That is, let o be a linear map from A  into A suchthat

aa = ä fot all a € A  and define

(8) gib, c) = TAA -ibcA £ R

fot all  b, c   e A~.

Since  R    = 0,  R  is an A-module under the product ra = ra     and because

of (2), the associated representation is a homomorphism.   Then  R  has a com-

plementary subalgebra if and only if there exists a linear mapping  p of A

into R  such that

(9) gib,c) = bpc-Ab-ibAp.

We collect some properties of g.   Since A  is antisymmetric,

(10) gib,b) = 0

which yields  gib, c~) = —g(c, b ).   Next write

~b\rb~2 = ib^b2)a + gdj, bA

and compute

íblb^)b'¡ = íb~b2)alc¡ + gíbvb2)b^

= ((è1I2)fc3)<T + gib~b2, ¿3) + gibv b2)bZ.
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Permute  by b2, b,  cyclically, add and make use of the Jacobi identity in

A  to obtain

Jib",    b°\,     b°A)    =   giblb2,     ft,)   +   gibv     b2)b°   +   gib2by     bA

(H)

+ gib2, bjb°~ + gibyb1, b2) + giby bAb0,.

Since  b°~ccr - ibcT £ R  and JÍR, A, A) = 0, (7) yields

(12) ]iA,daAA)a=}i-A, da, ba)a° = -]íaa,ba, ícdD.

Also [6, 2.14, p. 429] yields

-2]iaa, ~A, ca)d = /(<7a, a", (Ic)0")

+ ]Qa, Ia, icdY) + }ida, A, iabV).

Now  /  can be used to define a trilinear mapping, which we also denote by

/, from Ä into R by ]iâ, b, c) = }iâcr. b", F°l and (10), (ll), (12) and (13)

all hold.   To complete the proof of this case we show a slight extension of

the second Whitehead lemma.

Lemma 1.   Let  L  be a semisimple Lie algebra over a field of character-

istic  0 and let M  be a finite dimensional ÍLie) L-module.    Let  ix., x?) —►

g(x,, x2) be a bilinear mapping of L x L —> M such that

(14) gix, x) = 0,

g(xjX2, x3) + gixv x2)x3 + g(x2x3, xA + gix2, x3)xj

+ g(x 3x v x2) + gix., xAx2 = /(xj, x2, x3)

where

(16) -2/(x,, x2, xAx. = fix ,, x., x 2x A + fix,, x j, x3x.) + ]ix,, x,, x ,x A)

and

(17) }ixv x2, x3x4) = -/(x3, x4, x2)xj.

Then there exists a linear mapping x - > x" of  L  into M such that

(18) gixv x2) = xpx2 - x2Xj - (xjXj)'0.

Proof.   We use the machinery developed in the proofs of the Whitehead

lemmas [l].   Let   K be the kernel of the induced representation S and let

L,  be a complementary ideal of K in  L.   Then the restriction of S to  Lj

is one-to-one and the induced trace form is nondegenerate on   Lj.   Let iu.)

and  iu1) be complementary bases of   Lj  with respect to the trace form.   Then
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if u .<2 = S.a. .u . and u a = S   ß,    um, it follows that  a., =-ß, ■ since the
i J   11   J ml^km       ' ik r ki

trace form is invariant.   Let Y be the Casimir operator on M; that is,  Y =

SS,, S   ,-, and recall that Y commutes with each S , a £ L, and that  tr Y =
"r  u1' a'

StrSu.S   i = dim L, [l, p. 78].   As in the proof in [l, p. 89] set x^=u. in

(15), take the module product with respect to u1  and add on  i.   This gives

X/(xj,   X2,   22 V  =£g(xjX2,   72 V  +  g(xj,   X2)Y +"£gix2U.,   X AUl

+ 1jL,igix2> uhAuA^giu^y x2V +£(g(z/;, xAx2)ul.

Then, since S  is Lie,

^/(xj, x2, u.)u1 = gixv x2)r+^g(xjx2, u)ul   +^,gix2u., xAu1

+ £g(x2, u)ixA) +T^igixr u^ui)xl

+ ^giu.xx, x2)ul  +^,giui, xAix2u') + ^,igiu., xAu')xr

Using the above relation between  22 .a  and 22 a we compute that

£g(x2,   u)ix{u')  =£g(x2,   U.X^U1, zZg^Ui>   xAix2Ul) = £giu.X2,   xAu',

2_,/(22!,   Xj,   X2u) = -^jix2Ul,   Xj,   22.),

and

¿J]iul, x2, u.xA = -^jiu'x,, x2, 22.).

Then

-g(xr x2)r = ^g(x,x2, u)uAj^igix2, u.)ui)x1

and

-22^/(xj,   X2,   22,)t2Z

= £/(«',   Xj,   X222.) + ^/(wZ,   X2,    BJt^ + J^/í«*,   27.,   XjX2)

= -Z/(x27¿ Xj, «P -22/(*'*i. *y BP + E/("¿' »f Jclx2)

= -£/(*!<  "f  *2"7) - Z/^2'  at-  B'"*l> + Z/("¿.  «,-.  X1X2)

= Z!/^X2' "'• "P*i + X,/("'> *!• u)x2 + Y,]iu\ u., XjX2)

= 2Z/(«'. «,-. *2^1~S/^a'' »,' XPX2 + H^ui- ut- xxx^).
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Hence

-gixv x2)Y = ^g(xjx2, u)ul + ¿Zigix2, u)u1)xl + J^igiu^ xAui)x2

+ jj^fa1' uï x\xt) + 2^^'' uï xt}x\ ~tX-^u1' ui' X¿X?

If T is nonsingular, define

xP=z'gu «,v+un«*, «,-. *)>r-i-

Then  p is the desired mapping in (18).

Suppose  r is nilpotent.   Then 0 = tr Y = dim L.   and Y = 0.   Hence

ML = 0.   By (17) fix, y, z) = 0  and we have the classical case of the second

Whitehead lemma, hence the result holds in this case.   In the general case,

decompose  M  as the direct sum of the Fitting null and one components of M

with respect to Y.   These spaces are submodules and the conditions carry

over to them.   The conclusion holds on each of the submodules and hence on

M by adding the linear transformations obtained on the submodules.

Now we have the general result in the case A = A/R   is Lie.   Suppose

now that A   is not necessarily Lie and that R  is again a minimal ideal in A.

Then A « NÍA) ®/(Ä, A~, A).   Let  E  be the ideal of A   containing R   such

that NÍA) = E/R.   R  is the radical of E  and E/R  is Lie.   Then  R  is com-

plemented in  E  by a subalgebra  T.   Then

JÍE, E, E) Ç JÍT, T, T) + }ÍT, T, R) + JÍT, R, R) + JÍR, R, R) = 0.

Hence  E  is Lie and A » /(A, A, A) + NÍA).   Either R  n  /(A, A, A) = 0 or

R Ç ]iA> A> A).   In tne first case  /(A, A, A) (B T is a complementary subal-

gebra of R   since   JÍA,  A,  A)T C /(A,  A,  A)NÍA) = 0.   In the second case

R Ç JÍA, A, A)   O NÍA) and /(A, A, A)R = 0.   Then /(A, A, A) may be con-

sidered as a /(A, A, A)/R-module and since /(A, A, A)/ß   is semisimple,

JÍA, A, A) is completely reducible under /(A, A, A)/ß   by  [2, Corollary 8,

p. 244].   Hence there exists a complementary subalgebra D of R in /(A, A, A).

Since DT C /(A,  A,  A)N(A) =0,  D + T is a complementary subalgebra to

P.  in A.    This completes the proof when P.   is a minimal ideal of A   and the

result follows as in the paragraph after the statement of Theorem 1.

We turn to the conjugacy of the subalgebras complementary to the radi-

cal.   Suppose that A   is a semisimple Malcev algebra of characteristic 0  and

M is an A-module whose associated representation S is Lie; that is,  S      =

[S , S  ]  for all  x, y £ A.   Form the Malcev algebra A + M - B  with the
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natural product.   Then M  is the radical of B.   Form the Lie triple system

T g  associated with B  by defining the composition

(19) [x, y, zl = 2ixy)z - iyz)x - izx)y = z(- 2R      - [R , R ])
' J J ' xy x        y

in the vector space B  (see [4, p. 554]) and let

(20) Rix, y) = -2R      - [R  , R ].
' xy x        y

Then the radical of TB  coincides with the radical of B   [A, Satz 2, p. 557].

Let D  be a derivation of A  into M  and then D  is a derivation of T .   into

T B.   By [3, Theorem 2.18, p. 225] there exist x., y . £ B  such that SR(x., y.)

is a derivation of T    which extends D.   Since D:   T. —> T,,, when restricted to

A, D = SR(x., y.)  where x. £ M, y. £ A.   Since the representation S is Lie,

R      = [R  , R  1 for each x e M, y e A.   Hence
xy        L    x'       yJ '   '

R(x, y) = -Rx   - dU y) = -(3/2)D(x, y)

and D  is the sum of derivations  Dix, y), x £ M, y £ A.   Formally this shows

the following.

Lemma 2.   Let A   be a semisimple Malcev algebra over a field of char-

acteristic  0  and let M  be an A-module whose associated representation is

Lie.    Let D  be a derivation of A   into M.   Then there exist x. £ M, y . £ A' i ' J i

such that D =SD(x.( y .).

Remark.   In the lemma we are considering Dix., y.) as defined in the

second paragraph of this paper and considering M  as a 2-sided A-module.

As usual we say that two subalgebras of A   are strictly conjugate if one

is mapped onto the other by an automorphism of the form  G\ ■ • ■ G,   where

G. = exp D .  and D . is a nilpotent derivation.   Recall that  exp D exp D     is

of the form  exp D     where  D     is a nilpotent derivation by the Campbell-

Hausdorff formula.   Finally we note if y £ A   and x £ nilradical of A, then

Dix, y) is in the radical of the multiplication algebra of A   [2, Theorem 2,

p. 233].

Theorem 2.   Let A  be a Malcev algebra over a field of characteristic

0 whose radical R   is J ?-potent.   Let  L ,   be a semisimple subalgebra of A

and let  L  be a semisimple subalgebra of A  such that A = L © R.    Then  L .

is strictly conjugate to a subalgebra of L  by an automorphism G = exp D

where D is in the radical of the multiplication algebra of A.

Proof.   The proof follows along the usual lines for the Malcev-Harish-



8 E. L. STITZINGER

Chandra theorem.   Let x e L,.   Then  x  can be written uniquely as x = xx

+ Xer where  xA £ L  and Xer £ R.   Hence  X and cr are linear maps of  L,   in-

to  L  and  R, respectively, and  X is one-to-one.   If y £ L ., then

(21) (xy)A = xvyA

and

Cr     Cr
(22) ixy)a = xCTy    - y   x   + x   y

Hence  (xy)    £ RA C (V, where N is the nilradical of A, by [2, Corollary 3,

p. 235].   Since L jL j » L j, xCT e N for each x e Lj and LjCLffiN.   Note

that any minimal ideal  D  of A   contained in /V  satisfies D   + JÍD, A, A) « 0

since D  is / 2-potent and since any minimal ideal of A   contained in R  is

abelian [5, Theorem 1, p. 228].   Now construct a chain of ideals of A,

/V=A1DA2D---3Afe=0,

such that Ai/A.^l  is a minimal ideal in A/A. + 1  and ^¿A¿ + /(A¿, A, A) Ç

A . + ..   Then the natural representation of A   on A ./A ...   is Lie.   We prove

by induction that there exists an automorphism E .  such that  L .E . C L + A .

for  i ■» 1, • • •, k.   For i = 1, let  E .  = identity and it suffices to prove the

inductive step.   We may assume that  L . C L © A . and show the existence of

E. The definitions of X and  cr above are modified according to this as-

sumption.   Now A ./A ...  is an L.-module with product defined by äx = ax ,

a £ A ., x £ L ,.   Since  xay    £ A , + ., (22) becomes

/")2\ 7      \a cr     \ cr     A cr o-
(¿5) (xy)    - x    y   -y    x   =x   y-y    x.

If we set fix) = xa, then x —> /(x) is a linear mapping of  L ,   into A ./A ,+ J

and (23) becomes

(24) fixy) = fix)y - fiy)x.

By Lemma 2, there exist y . e L ., ~x~. £ A ./A , + ]   such that

za = fiz) = 22>(.x~> y .) = zX2>(x., yj)

2er = z   A. P(* -, y •)  mod A . ,,
^^ 1    J l 2+1

where D(x., y*) is a derivation of A   contained in the radical of the multipli-

cation algebra of A.   Let D = SD(x., yA) and   E ,+ , = exp(-D).   Then
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/''♦I Ax-xD) mod A. + 1 = (xX + xa - xXD - x°D)  mod A. + ]

= (xX - XerD)  mod A ,x, = xX mod A ,x,.
2+1 2+1

Hence LEî + 1ÇE©A.+    and  E....E,   is an automorphism of the desired

type.

Corollary.   Let A  and R  satisfy the conditions of Theorem 2.   Let A ,

and A 2  be subalgebras of A  which complement  R.   Then there exists an

automorphism  G = exp D,  D a derivation in the radical of the multiplication

algebra of A, such that A " = A   .
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