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THE MODEL COMPANION OF ZF

JORAM HIRSCHFELD

ABSTRACT.   We prove that the theory ZF has a model companion

and we describe an axiom system for it.

The notion of a model companion was introduced by E. Bers as a gen-

eralization of the notion of a model completion [3, §5].   In this paper we

prove that ZF has a model companion and describe a set of axioms for it.

This model companion, however, resembles more a theory of order (Theorem

3) than a set theory, and therefore, while supplying an interesting example

for model theory it does not shed any new light on set theory.   We feel that

this example demonstrates that by generalizing to model companions one may

lose the interesting relations between a theory and its model completion.

We deal with a language with a single binary relation £.   In a given

model we say that there is an £-chain leading from b to c if for some «,,•••,

a    (0 < n) b £ a£ • • • £ a    £ c.   A closed £-chain is a chain leading from
n — 1 n

some element to itself.

First we define the theory S:

S=lVx.  •••  *   ix,   /*, V---  V*        .   dx     Vx      /x.)|l<B<û)|.
1 n      \   r      2 n-1   r     n n í  '     —

S claims that there are no closed e-chains.   It is a universal theory (all the

axioms are universal sentences) and S C ZF  by the axiom of regularity.   We

want to show that S is the universal part of ZF.   We show more:

Theorem 1.   If yj is a universal sentence then either S   \-  xfr or ZF \- ~\ifr.

Proof.  We assume that not S   h if/  and show that ZF   r-  ~\ifr.    Let if/ be

Vxj  • • • x <,à(x ) where <7j is quantifier free.   We can assume that </> is the

disjunction of atomic formulas or their negations: it is at least a conjunction

<p. A  • • • A0,   of such formulas and if not 5  h Vx"<¡¿  then for some  i < k not

S  h VxçS.(x).   If we have shown that ZF   h "1 Vx cp. then ZF h ""| VxcA.

Thus we assume that  cp(x ) = Fj(x ) V • • • VF,(x) where every F. is of
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the form xa £ x „ or xa 4 x „ or xa4 x a (we dispose of the case  xa= x „ by

identifying the variables xaand x A).   Let  B ,(x~) be ~IF.(x) for i = 1, • • •, ze

and put // = {B . | z < zU.   We show that in every model of ZF one can find

elements  a., • • •, a    which satisfy all the formulas in H so that ZF h ~| if/.

Let   M t= ZF be given and put  X = {*,,* • •, x^S, and let  Xj =

jx.  , • ■ •, x .  | be the subset of X oí elements x such that no  B £ H is of
;1 ;s

the form y £ x.   We choose in M elements a,, • • •, a  , a      .  • • • a    which
•T l'SS + i TZ

are pairwise disjoint and map x .   —> a . (i = 1, • ■ ■, s) (from now on we de-
z

note by a     the element corresponding to x).

Next we let A ,   be the set {a  ,■ • •    a  S and put X   =\x £ X - X A if1 1 '     5 r 2 ll

"y e x" is in H then y £ X A.   To every x e X    we relate a   :

a   = {a \"y £ x"  is in H\ U \b  \
x y'    J x

where  b     is one of the elements a ... a     added to make sets different
X S + Z TZ

even if their extension on A     is the same.

We proceed in the same way (A . being sets of elements in A     ... ;

A ._   ) until we get X   = 0 .   We claim that  X = X   U   — UX        .   If not

then in   Y = X — (X. U  • • • U X      . ) every element contains some other ele-

ment of Y (else it would be in X. for some i < k). As Y is finite this is

possible only if there are  z., • • •, z    £ Y such that z l £ z  , z2 £ z    —

and z    £ z     are all in H which contradicts the assumption that   ~| Vx~c¿(F)

is consistent with S.

It is now easy to check that the elements chosen above satisfy </>(x ).

Q.E.D.

Corollaries.

(1) ZFy = S (all universal consequences of ZF follow already from S).

(2) Every model of S can be extended to a model of ZF.

(3) // ZF C T then every model of ZF can be extended to a model of T.

(A) ZF has the joint embedding property—aray rz^o models of ZF can be

simultaneously embedded in a third one.

Proofs. (1) follows immediately from Theorem 1 and implies (2) by 3.11

of [3].   As  ZF   (- <p or ZF h 1 <f> for every universal sentence the same is

true if we replace ZF by any stronger theory T.   Hence   T\/= S  and (3) fol-

lows again by 3.11 of [3].   (Indeed, reading through the proof of Theorem 1

it is clear that under slight modifications we may replace ZF by any theory

T which includes S and such that T implies that for any n elements there is
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a  "set"  containing the first r ones and not the rest (0 < r < n).   Thus for

every such T we have Ty = S and T is mutually model consistent with ZF.)

Finally, as ZF  \-  cf> or ZF  \- "1 cp if <f> is universal we have  ZF  h   c/> or

ZF   f- i/z whenever ZF \- <p t\ if/ and çS and (/f are universal.   This implies

(4) by 4.2 of [3].    Q.E.D.

Next we let S be the class of models of S (or the class of submodels of

models of ZF which is the same by Corollary 2).   Let fe be the class of

existentially complete models in 2.   We are going to show that fe is an ele-

mentary class.   We denote by S   the theory ÎUJ. US    where S    is the

sentence

Vxy 3 z(x = yVx€2r6yVyezex)

and S    is the set of sentences

{Vx, • • • x   3 y(x. £ x2 £ • ■ • £ x    —>

[x^y A • • ■ A x8Ty A yzSr+ ̂  x A • • •  A y8nX ])\Q < r < n, n < a>\

where 8 . ¡s either £ or 4.
i

Theorem 2.   //Feë r/>e?z F  (= S*.

Proof.   Let E be a model in ©.   Clearly E   |= S.   We show first that

F   f= S..   Let a, b £ E be given so that a / b.   As  F   t=   S there is no £-

chain leading from a to b or there is none leading from è to a.   Without loss

of generality we assume the last one.   We define a model M obtained from E

by adding a single new element c and defining a £ c and c £ b (fot no other

element dofEd£coic£ d).   We claim that MM.   If not then there is a

closed e-chain in M which must contain c preceded  by a and followed by b.

Hence a,  £ • • • £ a £ c £ b • • • £ a..   But this is impossible if no e-chain

leads from b to a.   Thus we have a model M of S which extends E and has

an element c such that a £ c £ b.   As F is existentially complete such an

element can be found in E.

Next we show that E t= S . Let cp be one of the sentences of S2 and

let a, e o, • • • € a be elements of E. We add a new element c to E and

obtain a model M by defining d £ c iff ¿ is a. for some z such that <p claims

x. e y, and c £ d iff d is a. fot some i such that cfj claims y £ x.. Then for

a1 • • • a we have an element y as required by <f> in M. We show that M N

S. If not then we have an e-chain which must contain c preceeded by some

a . and followed bv some  a. such that i < ?'.   d,£...£a.£c£a.£---£d,
l / ¡ ' L l J l

but then
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E k d, £ ■ • ■ £ a. £ a.x .••• e a   e • • • e a\
1 z z+ 1 7 L

which is impossible as E  t= S.

From the existential completeness of E it now follows that an element

like c can be found in E.   Hence   E   1= cp' and E  1= .SA.     Q.E.D.

Theorem 3 emphasizes the difference between ZF and its model com-

panion S   (see Theorem 5).   We begin with it because it simplifies the proof

of the converse of Theorem 2.

Definition.   Let M be a model of S  .   We write a < b for   3x(a e x A x e b).

Theorem 3.   //  M N S ' then < z's a dense linear order (with no end ele-

ments).   Also: if a £ b then a < b.

Proof.   From S we get~|(ö < a).   If a < b and b < c, S excludes the pos-

sibilities a = c and c < a so that by S    a < c.    Therefore we have a partial

order which is total by S,.   Assume now that a £ b, then by S, a 4 b and not

b < a so that a < b.

Next assume that a < b so that a £ c £ b fot some c.   By the remark

just made  a < c < b  so that the order is dense.   Finally, given an element

b, S - implies that there is an element c such that c £ b  (and therefore c <

b).   Therefore b is not minimal.   A similar argument shows that b is not

maximal.     Q.E.D.

We strengthen slightly the property S  .

Lemma.   Let M be a model of S   and a, < a    < • • • < a    elements of M.
1 12 n

Then for every formula

ch(x) = a,(5,xA---Aaz5xAxz5,,a     , f\ • • • l\ x8 a
~x- 11 r   r r+lr+1 n   n

we can find a solution c £ M such that a   < c < a     ..
' r r + i

Proof.   By the definition of the order and its density the sequence may

be extended to an e-chian a, £ b.  • ■ ■ £ b    £ a     such that between  a   and
1 1 rz r? r

a     ,   there are two elements: a   £ b   £ b     , £ a     ,.   By S„  we get an ele-
r +l rTr+Lr+tJ2 °

ment d £ M which satisfies ct>(d) Ab   £dAd£b,.     Q.E.D.

Theorem 4.   // M  1= S    then M is existentially complete.

Proof.  Let E be an existentially complete model extending M.   For any

sequence  c.,•••, c    £ E we denote by  D(c.  • • • c  ) the conjunction of

the formulas  c . £ c . and c ■ 4 c .  according to what the case is in E.   We

show that for every a  , • • •, a,  e M and /?,,••-, è     £ E there are elements

¿i., • • • , b ' in M such that  ,
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D(ay •■ ■, ak, bv • ■■ ,b)= D(av •• •, afe, b\, • •• , b'm).

It is easy to see that this implies that every existential formula with param-

eters  of M that  holds in F holds also in M, and as E is existentially com-

plete so also is M.   So let flj, •• *, a,, b,, • • •, b     be given.   We assume

that a, < • • • < a,   in the order of M.   As  E  t=  S  , E is also ordered and

clearly a j < — < afe   also in F.   We  may  assume that   />. < — < bm

and that c, < •• • < c is the order of all the elements above.   We have

4.1.   // "c. £ c" is in D(c,  ••• c,       ) ¿Ae« c . < c ..
' z ; 1 fe+zn z j

Thus  D(a  ,•••, a , bA is of the form <p(bA for a formula çS(x) as in

the Lemma, and we can find an element  b. £ M for which D(a^, • • •, a,, b. ) =

D(a ,)•••, a,, b. ) and so that  b. lies at the same place among  a    • • • a,

as  ¿>,   does.   From this and 4.1 it follows that  D(a     ■ ■ • , a,, b', b A is of

the form <p(bA) for some cp(x) as in the Lemma and we get an element

b2 £ M such that D(a     — , a  , b  , b  ) = D(alf — , a,, b'y, b2) and such

that b2 is ordered among a,, • • • , a,, è]  similar to how  b     is ordered among

flj, • • • , a,, è..   Continuing with the same argument we obtain  b.,.--,b

as required.     Q.E.D.

Theorem 5.  S   z's Z/ze model companion of ZF.

Proof.   By Theorems 3 and 4, fe is the class of models of S , so clearly

every model of ZF can be  extended to a model of S    and vice versa (i.e.

ZF and S    are mutually model consistent).   As every model of S    is exis-

tentially complete S    is model complete by Robinson's  test   [2, p. 191].

Therefore, S   is the model companion of ZF.    Q.E.D.

Corollary.  S    is the (finite and infinite) forcing companion of ZF.

By [l] and [3] this is always the case with theories that have model

companions.   We repeat it here to emphasize that straightforward model

theoretic forcing does not yield much of P. J. Cohen's theory.

We conclude with the following remark: While ZF has the joint embed-

ding property (Corollary 4) it violates in a strong sense the amalgamation

property.   If M  1= ZF then there are models  M{ and M2 of ZF such that

M C M., M C M    and there is no way to embed M    and M   over M in a third

model.   This is shown by choosing elements  a, b £ M  such that no e-chain

leads from either one to the other and constructing models   Mj with a £ c^ £

b and /VL with b £ c    £ a.
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