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NOTE ON RINGS OF FINITE REPRESENTATION
TYPE AND DECOMPOSITIONS OF MODULES

K. R. FULLER! AND IDUN REITEN

ABSTRACT. Tachikawa has shown that if a ring A is of finite represen-
tation type, then each of its left and right modules has a decomposition that

complements direct summands. We show that the converse is also true.

Anderson and Fuller[1] posed the problem of determining over which
rings does every module have a decomposition M = ®AMa that comple-
ments direct summands in the sense that whenever K is a direct summand
of M, M=K ® (@B Mﬁ) for some B C A. In response, Tachikawa [6] has
proved that the modules over a ring of finite representation type have such
decompositions. We recall that an artin ring is of finite representation type
if it has only a finite number of finitely generated indecomposable left mod-
ules. The purpose of this note is to use the results of [1]-[ 5] to show that
the converse of Tachikawa’s result is also true.

Auslander [3] says that a family of R-homomorphisms is noetherian if

given a sequence

fo /y

My——s M —— M, — -

in the family, with f.-.-f,/ # 0 for all 7, there is an integer » such that
{, is an isomorphism for all & > n, and that the family is conoetherian in

case given any sequence

[y fo

o M, M —— M

with fof «--f,# 0 forall 7, there is an integer n such that f, is an iso-
morphism for all &> n. The result we seek follows from the following re-

sult of Auslander
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(3, Theorem 3.1]. If A is a left artin ring over which the family of mono-
morphisms between finitely generated indecomposable left modules is noether-
ian and the family of epimorphisms between [initely generated indecompos-
able left modules is conoetherian then A is a ring of finite representation
type;

the following version of Harada and Sai’s

(5, Lemma 9]. Let § bea family of finitely generated modules. If
every M = @AMa with M, € ¥ complements direct summands then the

family of homomorphisms between the members of ¥ is noetherian;
and the

Proposition. Let A be an artin ring. If the family of homomorphisms
between finitely generated indecomposable right N-modules is noetherian
then the family of epimorphisms between finitely generated indecomposable

left A-modules is conoetherian.

Proof. The proof uses the Auslander-Bridger transpose [4] and some of
its properties which can be found in [2] and [4] or derived by standard dia-
gram chasing techniques. Let ()*=Hom,(_, A). Let M be a finitely gener-
ated left A-module that contains no nonzero projective direct summands, and
let P, 4 P, — M — 0 be a minimal projective resolution of M. Then the

transpose of M is a right A-module Tr(M) such that
P P — Tr(M) > 0

is exact. Tr(M) is also finitely generated with no nonzero projective direct
summands, and M is indecomposable iff Tr(M) is. If N is another A-module
with no projective direct summands and f: M — N is a homomorphism, there
is a homomorphism f: Te(N) — Tr (M) satisfying:

(1) if 04 fofeef; then [, [1fy £0;

(2) f is an isomorphism iff fis aa isomorphism.
Thus a nonterminating sequence of proper epimorphisms between finitely
generated indecomposable (necessarily nonprojective) left A-modules

fy fo

..—-)’V] —-)M _D/H

yields a sequence

~

7o fi
Tr(M,) — Tr (M P Tr(M,) — -+




94 K. R. FULLER AND I. REITEN

such thatAeach Tr (Ml.) is a finitely generated and indecomposable right A-
module, fi' oo /lfo # 0 for all ¢, and no fk is an isomorphism. So the Prop-
osition is proved.

According to [1, Corollary 9], if A is a ring whose (projective and in-
jective left) modules all have decompositions that complement direct sum-

mands, then A is (left) artin. Thus the above results yield

Theorem. A ring A is of finite representation type if (and only if) each
of its left and its right modules has a decomposition that complements direct

summands.
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