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AN EVERYWHERE DIVERGENT FOURIER-WALSH

SERIES OF THE CLASS  L(log+log+L)1-f

K. H. MOON

ABSTRACT.  Let  ♦   be a function satisfying (a)  *(t) >  0, convex and in-

creasing; (b)  *(Z 2 ) is a concave function of  t, 0 < t < oo;  and (c)  *(i) =

o't log log t) as  t —> °°.   We construct a function in the class

*(L) = \f 6 ¿(0, 1):  \~l*(\f(x)\)dx < ooj

whose Fourier-Walsh series diverges everywhere.

It is known that there exists a function in the class   /.(log log  L)  ~

for e y 0 whose trigonometric series diverges almost everywhere [l].   Let

$ be a function satisfying

(a) <î>(t) > 0,  convex and increasing in 0 < t < °°,

(b) í>(z   )  is a concave function of t, 0 < t < <x,  and

(c) $(/) = o(t log log t)  as t —, oc.

For the Walsh system, we will construct a function in the class

$(L) = // e L(0, 1): ft <D(|/U)|)¿x < 4

whose Fourier-Walsh series diverges everywhere by refining Stein's construc-

tion [3] of a function in  L(0, l)  with almost everywhere divergent Fourier-

Walsh series.

We recall the definition of the Walsh system in the Paley enumeration.

The Rademacher functions r (x)  ate defined by

r0(x) =1     (0<x<V2),        r0(x) = - 1    (V2 < x < l),

(1)

rQix + 1) = rQix), rn(x) = r0(2nx)    (n = 1, 2, • • •)-

For each positive integer n,  there is a unique representation of the form

« = ^-°l(jf -2', where e  = 0 or  1.   The Walsh functions in the Paley enumera-

tion are then given by
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(2) w0(x) = 1,        wn(x) = J! Lr.(x)] '.

7=0

Let x be any real number in  (0, l)-   Then we have a unique representa-

tion of the form  x = S°° ,x 2~n   with infinitely many x   4 0,   where x    =0
22= 1     22 -^ 22 22

or 1.

We define
oo

(3) * + y= Ll*n-yj2-fl

22 = 1

where x = S°°  .%  2_", y = S00  ,y 2~"> x  , y    = 0  or  1   and the operation   '+'
22=1   2Z ' J n=Un n7 sn f

is called dyadic addition (see Fine 12]).

We denote the Dirichlet kernel and the partial sum of Fourier series of

f(x) with respect to the Walsh functions in the Paley enumeration by

22-1

D ix) =   Y, w ,(x),
22 *—> J

(4)
22-1

SJ(x) =  £   C.(f)w.(x) = J1 f(t)Dn(x + t)dt,

7=0

where  C, = C -(f) = t^f(t)w.(t)dt is the ;th  Fourier coefficient of /.

The Lebesgue constant L     is given by

(5) L   =   [X\D (t)\dt.22 JO «

It is well known (see Fine [2]) that

L
,,. lim   sup I-I > a y 0.
(6) 22-00     ^Vlogn/ -

An interval  / with the length  2~n  is called a dyadic interval if the

(tz- l)th Rademacher function  r      At) is constant on  /.
22— 1

First of all we want to prove the following lemma, from which our main

theorem follows.   A part of the proof of this lemma will use a technique of

E. M. Stein in [3].

Lemma.   For any fixed positive integer n,   there exists a set E     such

that

(i) 77z(Fn)= 2-2N,   where  2N~ 1 < n < 2N,

(ii)   Ck(XEn) = SlxEnit)wkit)dt = 0  if 0 < k < 2N   or k y 2<V+2N,

(iii) MXEn(x) = suPr;>1|SnxEn(*)| > xÁLnm(En),

where  277(A)  and Xa  denote the Lebesgue measure and the characteristic

function of the set A   respectively.
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Proof. Let I. = [(;'- l)2~N, J2~N) (j = 1, 2, ■ ■ ■, 2N). We will choose

dyadic intervals d. such that d. C /. and m(d.) = 2_W+2 ) for all / = 1, 2,

...,2N,  and put En = \Jj21d..

Then we get

,N

(7) AE ) = X ttzW.) = 2-2

7=1

We note that for any k  with  0 < k < 2

m\t £ E   ; wAt) = 1} = 77ZÍ/ £  E   ; wAt) = - l\
71 fZ 71 fZ

and for any  ¿ > 2^ + 2^

m\t £ d.; wAt) = l\ = m\t £  d.; wAt) = - 1,

for all ;' = 1, 2, • • • , 2   .   Hence, we obtain

(8) C (xE ) = 0       if 0 < k < 2N or k y 2
N + 2

^kK*E
71

It remains to choose the dyadic intervals  d.  so that (iii) is satisfied.

We note that for 72 < 2   , D  (t) = S"-, w At) is constant on  /.  for each
«     #      J=°    J z

z: = 1, 2, • ■ • , 2   ,  and hence D (x + t)   is constant as x  and  t vary over /.

and  /.  respectively.   Let D  (/. + /.)  denote the value of D  (x + t)  foi x £ I.
¡ r ' n    2 7 22 i

and  t £ I.,   and
7'

(9)
a(x) =     1    if x y 0,

= -1    if x < 0.

Consider the  2N-tuples R, (l < k < 2N) such th at

(10) Rk = (a(M/fe J. lt)), o(Dn(Ik ; /2)), • - -, o(Dn(Ik + Z^))).

We now define the dyadic interval  ¿7".  by

(IDrf. (7 - 1)2-N + 2-N X ijf2-S (;' - 1)2"N + 2-N £ e..2-¿ + 2
(N+2

2=1 ¿=1

where ey! (l < i < 2N, 1 < j < 2N)  is either 0  or  1  and

(12) (_ i)ea = rADn(i. ; /.)).

Hence, for all t £ d. (l< j < 2N)

(13) w _ ,0)^0, + /.) = rN + ¿_ jO)^ + L) = (- l)f'X(/z * '? > 0

for each  i with   1 < z < 2   .
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Now we set  E    = I J?  ,d. and it remains to show that yp     satisfies
22v-,7=l; /VE22

condition (iii).

For any fixed x £ [0, l), there exists a unique  k  such that x £ /L,   and

we set

(14)

We again note that

'*'

77,    =n+2N+k-1       (2N~l <n<2N,n fixed).
kx —

(15)
D (x + t)w .,,,   At) y o

for all  t £ d- and /' = 1, 2, • • • , 2   .   Since  D  (x + t) is constant on each

h il 5 * 5 2   )  and ?7z(E ) = 2~      ,  we obtain, by applying (15).,

I*      *E W-Î »tfc-iXB (*)l=|/oXE it)W N + k_,it)DnixU)dt
Í 7 ■-

(16)

N

ZL W    2.2a. L      ,(/)D    U +   ¿Wî"
¿ ~N + k - 1 22

7=1        ' 7=1

2

= 2-2     H   f  |D (* + í)|íír= 7tz(F )  [l\D (x + t)\dt= m(E ) ■ L .
'—'  J j '    n ' 22    Jo  '    n ' n n

7 = 1 »

Thus, (16) implies MXe (x)>1AL  m(E  ).   The lemma is proved.

Now we are ready to prove the following theorem:

Theorem.    Let $  be a function satisfying conditions (a), (b) and (c).

Then there exists a function f £ $(L(0, l)) such that S f(x) diverges every-

where.

Proof.   If we note (6) and properties of the function <P,  we may choose

a sequence  \n.\_.   of positive integers satisfying the following conditions:

(a)   there is a constant A > 0 such that L„.y A log 77.,

iß)   N.+ 1 y N. + 2Ni,  and

(y)    rj>(a.)< /~2a.(log log a),

where  2Ni~1 < n. < 2Ni, a  = l/(log n.)m(En.), m(E„) = 2-2N/ and the sets

En    ate the same as in the lemma.   It is easy to see that the sequence

!a„î„> 1  is a lacunary sequence and there exists a constant  C such that

(17) Za. < Ca .
1 —       n

7 = 1

Let / be the measurable function defined by
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CM

(18) fix) = £ ajXE   ix).
.     , 22 .

7=z 7

From the properties of 0 and (17) we get

(oo \ oo

£ a,XE   (*)) <C£ «a)v      (x).

7 = 1 "i     / 7 = 1

In fact, if x does not belong to \<j'^_,En. or x belongs to infinitely many

En.'s  then both sides of (19) are equal to  0  or oo  respectively, and if x be-

longs to finitely many  En.'s then

<*>( £ a;xßn w] = * ( £ */XBji w) < *( £ <*,•] xE?j (*)

oo

<$iCak)xE    ix) < C £ $(a )yE    (%)
22, .     , ' 22 .

* 7 = 1 7

where  k = raaxj/'; x £ En ,j < oo.   Hence, we have

oo oo

(20) J1 *(/(x))¿x <Cj; $(ay)27z(£n ) < C Z —a-(log log a;.)Tzz(En ) < oo.

7=1 "' 7=1 l2 "'

This implies / £$(L).

Now it remains to show that S f(x)  diverges everywhere.   Let x be a

fixed point in [O, l).

For each positive integer k,  (14) and (16) imply that there exists a posi-

tive integer n,     such that

(21) "kx = «k + 2N"X       with ** < NTe* < Nk + A

and

(22) '^/^-V^^VV
If / / zs,  we obtain

"z,   -1Tex

(23) Sn    xE   ix) - S N    xE   ix) =    E      C.ixE   )w¿x) = °
kx       ni 2    kX       nj _^Nkx n.

since part (ii) of the lemma implies   C .(xe   ) = 0  if  2Nk < i < 2Nk + 1.    A

combination of (22), (23), (18) and (a) gives

|S«t   f{x) - S  NkJ{x)\ = aJV    XE     {x) - S   Nkx*E     (x)\
kx 2 kx       n, 2 nL

= a, L    77z(£    ) = L    /log tz, > A > 0.
k   "k       nk "k k~
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We finally get

,^ lim sup | S  f(x) - S f(x)\ y Ay 0
(24) ,22,22-00 '  m' "'      ' -

for all  x £ [0, l),  that is, the Fourier-Walsh series of / £$(/.) diverges

everywhere.

Remark.   A theorem in E. M. Stein [3, Theorem 3] implies that if for

every / £ 3>(0

(25) mix £ (0, 1): lim sup|Sn/(x)| < «A > 0

then there exists an absolute constant A  such that for any y > 0

(26) mix £ (0, l): sup|Sn/(x)| > y\ < JJ 4>(j\fix)\^dx.

We may apply this theorem to prove the existence of a function in the

class Í>(l)  whose Fourier-Walsh series diverges almost everywhere.

In fact, let f(x) =yc  (x) and y   = Vi L  m(E ), where the set E     is de-
' "■ C n ' 22 2222 22

fined in the lemma.   Then part (iii) of the Lemma implies

m\x £ (0, 1): MXr  ix) > yj = 1
22

for all positive integers  72,   but for  e, 0 < í < 1,

¡AxE W\
f1 $1 -Z_ \dx<e<l

fot all sufficiently large  n where the constant A  is as same as in the in-

equality (26),

Thus, our theorem for the almost everywhere divergence follows.
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