AN EVERYWHERE DIVERGENT FOURIER-WALSH SERIES OF THE CLASS $L\left(\log ^{+} \log ^{+} L\right)^{1-\epsilon}{ }^{1}$

K. H. MOON

ABSTRACT. Let Φ be a function satisfying (a) $\Phi(t) \geq 0$, convex and increasing; (b) $\Phi\left(t^{1 / 2}\right)$ is a concave function of $t, 0 \leq t<\infty$; and (c) $\Phi(t)=$ $o(t \log \log t)$ as $t \rightarrow \infty$. We construct a function in the class

$$
\boldsymbol{\Phi}(L)=\left\{f \in L(0,1): \int_{0}^{1} \Phi(|f(x)|) d x<\infty\right\}
$$

whose Fourier-Walsh series diverges everywhere.
It is known that there exists a function in the class $L\left(\log ^{+} \log ^{+} L\right)^{1-\epsilon}$ for $\epsilon>0$ whose trigonometric series diverges almost everywhere [1]. Let Φ be a function satisfying
(a) $\Phi(t) \geq 0$, convex and increasing in $0 \leq t<\infty$,
(b) $\Phi\left(t^{1 / 2}\right)$ is a concave function of $t, 0 \leq t<\infty$, and
(c) $\Phi(t)=o(t \log \log t)$ as $t \rightarrow \infty$.

For the Walsh system, we will construct a function in the class

$$
\Phi(L)=\left\{f \in L(0,1): \int_{0}^{1} \Phi(|f(x)|) d x<\infty\right\}
$$

whose Fourier-Walsh series diverges everywhere by refining Stein's construction [3] of a function in $L(0,1)$ with almost everywhere divergent FourierWalsh series.

We recall the definition of the Walsh system in the Paley enumeration. The Rademacher functions $r_{n}(x)$ are defined by

$$
\begin{align*}
r_{0}(x) & =1 \quad(0 \leq x<1 / 2), & & r_{0}(x)=-1 \quad(1 / 2 \leq x<1) \tag{1}\\
r_{0}(x+1) & =r_{0}(x), & & r_{n}(x)=r_{0}\left(2^{n} x\right) \quad(n=1,2, \cdots)
\end{align*}
$$

For each positive integer n, there is a unique representation of the form $n=\sum_{j=0}^{\infty} \epsilon_{j} 2^{j}$, where $\epsilon_{j}=0$ or 1 . The Walsh functions in the Paley enumeration are then given by

Received by the editors March 18, 1974.
AMS (MOS) subject classifications (1970). Primary 42A56; Secondary 40A05.
Key words and phrases. Rademacher functions, Walsh functions, Fourier-Walsh series.

1 The results reported here are part of a Ph.D. thesis written at Purdue University under the direction of Professor R. A. Hunt.

$$
\begin{equation*}
w_{0}(x)=1, \quad w_{n}(x)=\prod_{j=0}^{\infty}\left[r_{j}(x)\right]^{\epsilon_{j}} \tag{2}
\end{equation*}
$$

Let x be any real number in $(0,1)$. Then we have a unique representation of the form $x=\sum_{n=1}^{\infty} x_{n} 2^{-n}$ with infinitely many $x_{n} \neq 0$, where $x_{n}=0$ or 1 .

We define

$$
\begin{equation*}
x \dot{+} y=\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right| 2^{-n} \tag{3}
\end{equation*}
$$

where $x=\sum_{n=1}^{\infty} x_{n} 2^{-n}, y=\sum_{n=1}^{\infty} y_{n} 2^{-n}, x_{n}, y_{n}=0$ or 1 and the operation ' q ' is called dyadic addition (see Fine [2]).

We denote the Dirichlet kernel and the partial sum of Fourier series of $f(x)$ with respect to the Walsh functions in the Paley enumeration by

$$
\begin{align*}
& D_{n}(x)=\sum_{j=0}^{n-1} w_{j}(x), \tag{4}\\
& S_{n} f(x)=\sum_{j=0}^{n-1} C_{j}(f) w_{j}(x)=\int_{0}^{1} f(t) D_{n}(x \dot{+} t) d t
\end{align*}
$$

where $C_{j}=C_{j}(f)=\int_{0}^{1} f(t) w_{j}(t) d t$ is the j th Fourier coefficient of f.
The Lebesgue constant L_{n} is given by

$$
\begin{equation*}
L_{n}=\int_{0}^{1}\left|D_{n}(t)\right| d t \tag{5}
\end{equation*}
$$

It is well known (see Fine [2]) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left(\frac{L_{n}}{\log n}\right) \geq \alpha>0 \tag{6}
\end{equation*}
$$

An interval I with the length 2^{-n} is called a dyadic interval if the ($n-1$) th Rademacher function $r_{n-1}(t)$ is constant on I.

First of all we want to prove the following lemma, from which our main theorem follows. A part of the proof of this lemma will use a technique of E. M. Stein in [3].

Lemma. For any fixed positive integer n, there exists a set E_{n} such that
(i) $m\left(E_{n}\right)=2-2^{N}$, where $2^{N-1} \leq n<2^{N}$,
(ii) $C_{k}\left(\chi E_{n}\right)=\int_{0}^{1} \chi E_{n}(t) w_{k}(t) d t=0$ if $0<k<2^{N}$ or $k \geq 2^{N+2^{N}}$,
(iii) $M \chi E_{n}(x)=\sup _{n>1}\left|S_{n} \chi_{E_{n}}(x)\right| \geq 1 / 2 L_{n} m\left(E_{n}\right)$,
where $m(A)$ and χ_{A} denote the Lebesgue measure and the characteristic function of the set A respectively.

Proof. Let $I_{j}=\left[(j-1) 2^{-N}, j 2^{-N}\right)\left(j=1,2, \cdots, 2^{N}\right)$. We will choose dyadic intervals d_{j} such that $d_{j} \subset I_{j}$ and $m\left(d_{j}\right)=2-\left(N+2^{N}\right)$ for all $j=1,2$, $\cdots, 2^{N}$, and put $E_{n}=\bigcup_{j-1}^{2^{N}} d_{j}$.

Then we get

$$
\begin{equation*}
m\left(E_{n}\right)=\sum_{j=1}^{2^{N}} m\left(d_{j}\right)=2^{-2^{N}} \tag{7}
\end{equation*}
$$

We note that for any k with $0<k<2^{N}$

$$
m\left\{t \in E_{n} ; w_{k}(t)=1\right\}=m\left\{t \in E_{n} ; w_{k}(t)=-1\right\}
$$

and for any $k \geq 2^{N+2 N}$

$$
m\left\{t \in d_{j} ; w_{k}(t)=1\right\}=m\left\{t \in d_{j} ; w_{k}(t)=-1\right\}
$$

for all $j=1,2, \cdots, 2^{N}$. Hence, we obtain

$$
\begin{equation*}
C_{k}\left(\chi_{E_{n}}\right)=0 \quad \text { if } 0<k<2^{N} \text { or } k \geq 2^{N+2^{N}} \tag{8}
\end{equation*}
$$

It remains to choose the dyadic intervals d_{j} so that (iii) is satisfied. We note that for $n<2^{N} ; D_{n}(t)=\sum_{j=0}^{n-1} w_{j}(t)$ is constant on I_{i} for each $i=1,2, \cdots, 2^{N}$, and hence $D_{n}(x+t)$ is constant as x and t vary over I_{i} and I_{j} respectively. Let $D_{n}\left(I_{i}+I_{j}\right)$ denote the value of $D_{n}(x+t)$ for $x \in I_{i}$ and $t \in I_{j}$, and

$$
\begin{align*}
\sigma(x) & =1 & & \text { if } x \geq 0 \\
& =-1 & & \text { if } x<0 \tag{9}
\end{align*}
$$

Consider the 2^{N}-tuples $R_{k}\left(1 \leq k \leq 2^{N}\right)$ such that

$$
\begin{equation*}
R_{k}=\left(\sigma\left(D_{n}\left(I_{k} \dot{+} I_{1}\right)\right), \sigma\left(D_{n}\left(I_{k} \dot{+} I_{2}\right)\right), \cdots, \sigma\left(D_{n}\left(I_{k} \dot{+} I_{2} N\right)\right)\right) \tag{10}
\end{equation*}
$$

We now define the dyadic interval d_{j} by
$(11) d_{j}=\left[(j-1) 2^{-N}+2^{-N} \sum_{i=1}^{2^{N}} \epsilon_{j i} 2^{-i},(j-1) 2^{-N}+2^{-N} \sum_{i=1}^{2^{N}} \epsilon_{j i} 2^{-i}+2^{-\left(N+2^{N}\right)}\right)$
where $\epsilon_{j^{i}}\left(1 \leq i \leq 2^{N}, 1 \leq j \leq 2^{N}\right)$ is either 0 or 1 and

$$
\begin{equation*}
(-1)^{\epsilon}{ }^{\boldsymbol{j} i}=\sigma\left(D_{n}\left(I_{i} \dot{+} I_{j}\right)\right) \tag{12}
\end{equation*}
$$

Hence, for all $t \in d_{j}\left(1 \leq j \leq 2^{N}\right)$

$$
\begin{equation*}
w_{2}^{N+i-1}(t) D_{n}\left(I_{i}+I_{j}\right)=r_{N+i-1}(t) D_{n}\left(I_{i}+I_{j}\right)=(-1)^{\epsilon} j i D_{n}\left(I_{i} \dot{+} I_{j}\right) \geq 0 \tag{13}
\end{equation*}
$$

for each i with $1 \leq i \leq 2^{N}$.

Now we set $E_{n}=\bigcup_{j=1}^{2^{N}} d_{j}$ and it remains to show that $\chi_{E_{n}}$ satisfies condition (iii).

For any fixed $x \in[0,1)$, there exists a unique k such that $x \in I_{k}$, and we set

$$
\begin{equation*}
n_{k x}=n+2^{N+k-1} \quad\left(2^{N-1} \leq n<2^{N}, n \text { fixed }\right) \tag{14}
\end{equation*}
$$

We again note that

$$
\begin{equation*}
D_{n}(x+t) w_{2^{N+k-1}}(t) \geq 0 \tag{15}
\end{equation*}
$$

for all $t \in d_{j}$ and $j=1,2, \cdots, 2^{N}$. Since $D_{n}(x+t)$ is constant on each $I_{i}\left(I \leq i \leq 2^{N}\right)$ and $m\left(\mathrm{E}_{n}\right)=2^{-2^{N}}$, we obtain, by applying (15),

$$
\left|S_{n_{k x}} X_{E_{n}}(x)-S_{2^{N+k-1}} \chi_{E_{n}}(x)\right|=\left|\int_{0}^{1} \chi_{E_{n}}(t) w_{2^{N+k-1}}(t) D_{n}(x+t) d t\right|
$$

$$
\begin{align*}
& =\left|\sum_{j=1}^{2^{N}} \int_{d_{j}} w_{2^{N+k-1}}(t) D_{n}(x \dot{+} t) d t\right|=\sum_{j=1}^{2^{N}} \int_{d_{j}}\left|D_{n}(x \dot{+} t)\right| d t \tag{16}\\
& =2^{-2^{N}} \sum_{j=1}^{2^{N}} \int_{I_{j}}\left|D_{n}(x \dot{+} t)\right| d t=m\left(E_{n}\right) \int_{0}^{1}\left|D_{n}(x \dot{+} t)\right| d t=m\left(E_{n}\right) \cdot L_{n} .
\end{align*}
$$

Thus, (16) implies $M \chi_{E_{n}}(x) \geq 1 / 2 L_{n} m\left(E_{n}\right)$. The lemma is proved.
Now we are ready to prove the following theorem:
Theorem. Let Φ be a function satisfying conditions (a), (b) and (c). Then there exists a function $f \in \Phi(L(0,1))$ such that $S_{n} f(x)$ diverges everywhere.

Proof. If we note (6) and properties of the function Φ, we may choose a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ of positive integers satisfying the following conditions:
(α) there is a constant $A>0$ such that $L_{n_{j}} \geq A \log n_{j}$,
(β) $N_{j+1} \geq N_{j}+2^{N_{j}}$, and
(γ) $\quad \Phi\left(\alpha_{j}\right) \leq j^{-2} \alpha_{j}\left(\log \log \alpha_{j}\right)$,
where $2^{N_{j}-1} \leq n_{j}<2^{N_{j}}, \alpha_{j}=1 /\left(\log n_{j}\right) m\left(E_{n_{j}}\right), m\left(E_{n_{j}}\right)=2-2^{N_{j}}$ and the sets $E_{n_{j}}$ are the same as in the lemma. It is easy to see that the sequence $\left\{\alpha_{n}\right\}_{n \geq 1}$ is a lacunary sequence and there exists a constant C such that

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} \leq C \alpha_{n} \tag{17}
\end{equation*}
$$

Let f be the measurable function defined by

$$
\begin{equation*}
f(x)=\sum_{j=1}^{\infty} \alpha_{j} x_{E_{n_{j}}}(x) \tag{18}
\end{equation*}
$$

From the properties of Φ and (17) we get

$$
\begin{equation*}
\Phi\left(\sum_{j=1}^{\infty} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) \leq C \sum_{j=1}^{\infty} \Phi\left(\alpha_{j}\right) \chi_{E_{n_{j}}}(x) \tag{19}
\end{equation*}
$$

In fact, if x does not belong to $\bigcup_{j=1}^{\infty} E_{n_{j}}$ or x belongs to infinitely many $E_{n_{j}}$'s then both sides of (19) are equal to 0 or ∞ respectively, and if x belongs to finitely many $E_{n_{j}}$'s then

$$
\begin{aligned}
\Phi\left(\sum_{j=1}^{\infty} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) & =\Phi\left(\sum_{j=1}^{k} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) \leq \Phi\left(\sum_{j=1}^{k} \alpha_{j}\right) \chi_{E_{n_{k}}}(x) \\
& \leq \Phi\left(C \alpha_{k}\right) \chi_{E_{n_{k}}}(x) \leq C \sum_{j=1}^{\infty} \Phi\left(\alpha_{j}\right) \chi_{E_{n_{j}}}(x)
\end{aligned}
$$

where $k=\max \left\{j ; x \in E_{n_{j}}\right\}<\infty$. Hence, we have (20) $\int_{0}^{1} \Phi(f(x)) d x \leq C \sum_{j=1}^{\infty} \Phi\left(\alpha_{j}\right) m\left(E_{n_{j}}\right) \leq C \sum_{j=1}^{\infty} \frac{1}{j^{2}} \alpha_{j}\left(\log \log \alpha_{j}\right) m\left(E_{n_{j}}\right)<\infty$. This implies $f \in \Phi(L)$.

Now it remains to show that $S_{n} f(x)$ diverges everywhere. Let x be a fixed point in $[0,1)$.

For each positive integer $k,(14)$ and (16) imply that there exists a positive integer $n_{k x}$ such that

$$
\begin{equation*}
n_{k x}=n_{k}+2^{N_{k x}} \quad \text { with } N_{k} \leq N_{k x}<N_{k}+2^{N_{k}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{n_{k x}} \chi_{E_{n_{k}}}(x)-S_{2} N_{k x} \chi_{E_{n_{k}}}(x)\right|=L_{n_{k}} m\left(E_{n_{k}}\right) \tag{22}
\end{equation*}
$$

If $j \neq k$, we obtain

$$
\begin{equation*}
S_{n_{k x}} \chi_{E_{n_{j}}}(x)-S_{2} N_{k x} \chi_{E_{n_{j}}}(x)=\sum_{i=2}^{N_{k x}-1} C_{i}\left(\chi_{E_{n_{j}}}\right) w_{i}(x)=0 \tag{23}
\end{equation*}
$$

since part (ii) of the lemma implies $C_{i}\left(\chi_{E_{n j}}\right)=0$ if $2^{N_{k}} \leq i<2^{N_{k}+1}$. A combination of (22), (23), (18) and (α) gives

$$
\begin{aligned}
\left|S_{n_{k x}} f(x)-S_{2}^{N_{k x}} f(x)\right| & =\alpha_{k}\left|S_{n_{k x}} \chi_{E_{n_{k}}}(x)-S_{2} N_{k x} \chi_{E_{n_{k}}}(x)\right| \\
& =\alpha_{k} L_{n_{k}} m\left(E_{n_{k}}\right)=L_{n_{k}} / \log n_{k} \geq A>0 .
\end{aligned}
$$

We finally get

$$
\begin{equation*}
\limsup _{m, n \rightarrow \infty}\left|S_{m} f(x)-S_{n} f(x)\right| \geq A>0 \tag{24}
\end{equation*}
$$

for all $x \in[0,1)$, that is, the Fourier-Walsh series of $f \in \Phi(L)$ diverges everywhere.

Remark. A theorem in E. M. Stein [3, Theorem 3] implies that if for every $f \in \Phi(L)$

$$
\begin{equation*}
m\left\{x \in(0,1): \limsup _{n \rightarrow \infty}\left|S_{n} f(x)\right|<\infty\right\}>0 \tag{25}
\end{equation*}
$$

then there exists an absolute constant A such that for any $y>0$

$$
\begin{equation*}
m\left\{x \in(0,1): \sup _{n \geq 1}\left|S_{n} f(x)\right|>y\right\} \leq \int_{0}^{1} \Phi\left(\frac{A}{y}|f(x)|\right) d x \tag{26}
\end{equation*}
$$

We may apply this theorem to prove the existence of a function in the class $\Phi(L)$ whose Fourier-Walsh series diverges almost everywhere.

In fact, let $f(x)=\chi_{E_{n}}(x)$ and $y_{n}=1 / 2 L_{n} m\left(E_{n}\right)$, where the set E_{n} is defined in the lemma. Then part (iii) of the Lemma implies

$$
m\left\{x \in(0,1): M{X_{F}}_{n}(x)>y_{n}\right\}=1
$$

for all positive integers n, but for $\epsilon, 0<\epsilon<1$,

$$
\int_{0}^{1} \Phi\left(\frac{A \chi_{E_{n}}{ }^{(x)}}{y_{n}}\right) d x \leq \epsilon<1
$$

for all sufficiently large n where the constant A is as same as in the inequality (26).

Thus, our theorem for the almost everywhere divergence follows.

REFERENCES

1. Y. M. Chen, An almost everywhere divergent Fourier series of the class $L\left(\log ^{+} \log ^{+} L\right)^{1-\epsilon}$, J. London Math. Soc. 44 (1969), 643-654. MR 39 \#1886; erratum, 40, p. 1705.
2. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372414. MR 11, 352.
3. E. M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 23 \#A2695.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907

Current address: ITT/Federal Electric Corporation, P. O. Box 1886, Vandenberg Air Force Base, California 93437

