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AN EVERYWHERE DIVERGENT FOURIER-WALSH

SERIES OF THE CLASS L(log*log*L)!-¢
K. H. MOON

ABSTRACT. Let & be a function satisfying (a) ®(¢) 2 0, convex and in-
creasing; (b) d’(tl/z) is a concave function of ¢, 0 <t < o0; and (c) &(t) =
o(t log log t) as t — 0. We construct a function in the class

®(L) = {f € L0, 1): [J &(|f ()] )dx < oo}

whose Fourier-Walsh series diverges everywhere.

It is known that there exists a function in the class L(log*log"L)!~¢

for € > 0 whose trigonometric series diverges almost everywhere [1]. Let
® be a function satisfying

(a) (s) > 0, convex and increasing in 0 < ¢ < o,

(b) ®(+%) is a concave function of ¢, 0 <'t < o, and

(c) ®(1) = olt log log 1) as t — oo.

For the Walsh system, we will construct a function in the class
1
(L) = {/ e Lo, : [} @(/(a)ds <w}

whose Fourier-Walsh series diverges everywhere by refining Stein’s construc-
tion [3] of a function in L(0, 1) with almost everywhere divergent Fourier-
Walsh series.

We recall the definition of the Walsh system in the Paley enumeration.
The Rademacher functions 7 (x) are defined by

) =1 (0<x<y), rlx)=-1 (4<x<1),
(1)
rolx + 1) = 7(x), (%) =r(2") (n=1,2,-- ).

For each positive integer n, there is a unique representation of the form
n= 2;"2051.27, where €,=0or I The Walsh functions in the Paley enumera-
tion are then given by
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o0
€.
(2) wyx) =1, w (x)= II [r].(x)] 7
7=0
Let x be any real number in (0, 1)- Then we have a unique representa-

tion of the form x = Z:;Ian'" with infinitely many x # 0, where x_ =0
or 1.
We define
0
3) x+y= len—y"|2_”

n=1

where x = 2:;1",,2-"’ y = 2::1)/”2"”, %.5¥,=0 or 1 and the operation ‘i’
is called dyadic addition (see Fine [2D).
We denote the Dirichlet kernel and the partial sum of Fourier series of
f(x) with respect to the Walsh functions in the Paley enumeration by
n—1
Dn(x) = E w].(x),

i:o

(4)
n-1

1 .
W) = X CDuw ) = [ 1D (x + e,
i=0
where C]. = C].(/) = fé/(t)w].(t)dt is the jth Fourier coefficient of f.
The Lebesgue constant L is given by

1
(5) L,= | 1D (dae.
It is well known (see Fine [2]) that
Ln
i >a >0,
© Jim sup () 2

An interval | with the length 27" is called a dyadic interval if the
(n - 1)th Rademacher function 7, 1) is constant on I.

First of all we want to prove the following lemma, from which our main
theorem follows. A part of the proof of this lemma will use a technique of
E. M. Stein in [3].

Lemma. For any fixed positive integer n, there exists a set E, such
that

(1) m(En) = 2-2N, where 2N-1 <n< 2N,
(iD) Cplxe,) = foxe,(Dw (Ddt =0 if 0< k< 2V or k> 2N+2N,
(iii) MxE,(x) = sup, IS, xE, (0| > YL m(E),
where m(A) and Xa denote the Lebesgue measure and the characteristic
function of the set A respectively.
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Proof. Lec I.=[(j- 27N, 27M) (j=1,2, - , 2M). We will choose
dyadxc intervals d such that d,Cl and m(d)— 2= (N+2N) forall j=1, 2,
vy 2 ,andputE U;-l;
Then we get

2N

@) mE) = X md) =272

i=1
We note that for any & with 0 < k< 2N

mit € E_; w(t) =1} =mit € E ; w, (1) = -1
and for any k> 2N+2N

mit € d; wk(t) =1l =mite d; wk(t) = -1}
forall j=1,2, .-, 2N, Hence, we obtain

N
(8) Clxg )=0 if 0<k<2Nor k>2N*2,
n

It remains to choose the dyadic intervals d. so that (iii) is satisfied.

We note that for n < 2N s D, () = E"'l (t) is constant on I for each
i=1,2,---,2N, and hence D (x + t) is constant as x and t vary over I,
and I,‘ tespectlvely. Let Dn(li + I].) denote the value of Dn(x i) for x € I
and ¢ € I]., and

olx)= 1 if x>0,
© =-1 if x<0.
Consider the ZN-tuples R, (1<k< 2N) such that
(10) R, =(o(D (1, + 1)), o(D (I, + 1)), -+, oD (I, + IzN)))'
We now define the dyadic interval d]. by

N 2N

N

. - - -i (: -N -N -1 -(N+2)

(Dg = [G-D27N+ 27N F e, 277, (- 1D27V + 27N 37¢; 277+ 2
i=1 i=1
where €i (1<i< N,1< i< 2N) is either 0 or 1 and
€.. .

(12) 17 = oD (I + 1.
Hence, for all ¢ €d, (1< j< 2MN)

€.. .
13) w gy (OD U4 =ry ;D (14 1) = (17D (1 4 )20

for each i with 1< i< 2N,
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Now we set E_ = U,zled,' and it remains to show that xg, satisfies
condition (iii).
For any fixed x € [0, 1), there exists a unique & such that x €1,, and

we set
(14) ny =n+ 2V Rl QN1 <n <N fixed).

We again note that

(15) Dn(xi- t)w2N+k_l(t)20

forall t€d; and j=1,2, ,2N. Since D (x + 1) is constant on each

1.(1<ig ZN) and m(E ) = 2—2 , we obtain, by applying (15),

1 .
|SnkxxE”(x) - SZN+k— len(x)| = fo XEn(t)szHe—- (D, (x + D)dt

(16)

[

N
2
zf Nt DD _(x & nat _z f |D_(x + 1)dt

N
2

2" 5 [ 1D, 4 Dlde = m(E,) [1D,(x 4 Dt = m(E) - L,
j=1 "7

Thus, (16) implies MXE,,(") > %an(En). The lemma is proved.

Now we are ready to prove the following theorem:

Theorem. Let ® be a function satisfying conditions (a), (b) and (c).
Then there exists a function [ € ®(L(0, 1)) such that Snf(x) diverges every-

where.

Proof. If we note (6) and properties of the function ®, we may choose
a sequence {n, }T_l of positive integers satisfying the following conditions:

(a) there is a constant A > 0 such that L, iZ A log .

B N+1>N +2 7, and

() CD(OL )</ a; (log log CL)
where ZN"I < n; < ZNJ, j 1/(log n )m(E ), m(E,, )_ 2-2Nj apd the sets
E,,]. are the same as in the lemma. It is easy to see that the sequence

{an}n> 1 is a lacunary sequence and there exists a constant C such that

n
(17) > a <Ca
j=1

Let { be the measurable function defined by
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(18) f) =3 axg (x).
i=1 "
From the properties of ® and (17) we get

(19) o Zl aijn.(x) <Cc X d)(a’.)xEn (x).
1=

i j=1 i

In fact, if x does not belong to U;ZIE,,]. or x belongs to infinitely many
E,,j’s then both sides of (19) are equal to 0 or ~ respectively, and if x be-
longs to finitely many E,,J.’s then

=3 k k
o > a].xEn.(x) 10> a].xEn‘(x) <Ol X o Xg (x)

j=1 j j=1 i j=1 k

<®(Cap)yy (W<C X a)xp ()
ﬂk ]=1 nj
where k= max{j; x € E,,].} < . Hence, we have

1 1
(20) [ B/ (Nax < C 121 W n(E, ) < C ]):1 j—zaj(log log a,m(E, ) <=.
This implies f € ®(L).
Now it remains to show that Sn/(x) diverges everywhere. Let x be a
fixed point in [0, 1).
For each positive integer k, (14) and (16) imply that there exists a posi-
tive integer n, such that

N N

(21) e =My +2 % with N, SN, <N, +2 %
and

) (x) - S (D=L mE_).
(22) | nkxXEnk szxXEnk | " Mk

If j#£ k, we obtain
nkx_l
(23) Suy Xe (=S xp ()= 2 Clxg (=0
o 2 " ;o Nkx 5

since part (ii) of the lemma implies Ci(xEn) =0 if 2Nk < i< 2Ne*1, A
combination of (22), (23), (18) and () givesl

Is, [ - Sszx/(x)l

a,ls x)-5§ (x)]
kx k‘ nle.xXEn,e szxXEn

k

a,L_ m(E_ )=L_ /logn, >A>0.
knk n, n, k=
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We finally get
(24) lim sup |S_f(x) - f(x)] >A>0

m,n—oo

for all x € [0, 1), that is, the Fourier-Walsh series of f € ®(L) diverges
everywhere.

Remark. A theorem in E. M. Stein [3, Theorem 3] implies that if for
every f € (L)

(25) m{x € (0, 1): lim suplSnf(x)| < oo} >0
7 —00
then there exists an absolute constant A such that for any y > 0
1 (A
%) m{x € (0, 1) supls, )] > y}f /! fD(;I/(x)|>dx.

We may apply this theorem to prove the existence of a function in the
class ®(L) whose Fourier-Walsh series diverges almost everywhere.

In fact, let f(x) =xEn(x) and y, = %L m(E ), where the set E, is de-
fined in the lemma. Then part (iii) of the Lemma implies

mix € (0, : My (x) > yi=1

for all positive integers n, but for €, 0<e< 1,

AXE (x)
2 Jdx<e<1

n

for all sufficiently large » where the constant A is as same as in the in-
equality (26),

Thus, our theorem for the almost everywhere divergence follows.
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