AN EVERYWHERE DIVERGENT FOURIER-WALSH SERIES OF THE CLASS $L(\log^{+}\log^{+}L)^{1-\epsilon}$

K. H. MOON

ABSTRACT. Let Φ be a function satisfying (a) $\Phi(t) \ge 0$, convex and increasing; (b) $\Phi(t^{\frac{1}{2}})$ is a concave function of t, $0 \le t < \infty$; and (c) $\Phi(t) = o(t \log \log t)$ as $t \to \infty$. We construct a function in the class

$$\Phi(L) = \{ f \in L(0, 1) : \int_0^1 \Phi(|f(x)|) dx < \infty \}$$

whose Fourier-Walsh series diverges everywhere.

It is known that there exists a function in the class $L(\log^{+}\log^{+}L)^{1-\epsilon}$ for $\epsilon > 0$ whose trigonometric series diverges almost everywhere [1]. Let Φ be a function satisfying

- (a) $\Phi(t) \ge 0$, convex and increasing in $0 \le t < \infty$,
- (b) $\Phi(t^{\frac{1}{2}})$ is a concave function of t, $0 < t < \infty$, and
- (c) $\Phi(t) = o(t \log \log t)$ as $t \to \infty$.

For the Walsh system, we will construct a function in the class

$$\Phi(L) = \left\{ f \in L(0, 1) \colon \int_0^1 \Phi(|f(x)|) dx < \infty \right\}$$

whose Fourier-Walsh series diverges everywhere by refining Stein's construction [3] of a function in L(0, 1) with almost everywhere divergent Fourier-Walsh series.

We recall the definition of the Walsh system in the Paley enumeration. The Rademacher functions $r_n(x)$ are defined by

$$r_0(x) = 1 \quad (0 \le x < \frac{1}{2}), \qquad r_0(x) = -1 \quad (\frac{1}{2} \le x < 1),$$

$$r_0(x+1) = r_0(x), \qquad \qquad r_n(x) = r_0(2^n x) \quad (n=1, 2, \cdots).$$

For each positive integer n, there is a unique representation of the form $n=\sum_{j=0}^\infty \epsilon_j 2^j$, where $\epsilon_j=0$ or 1. The Walsh functions in the Paley enumeration are then given by

Received by the editors March 18, 1974.

AMS (MOS) subject classifications (1970). Primary 42A56; Secondary 40A05. Key words and phrases. Rademacher functions, Walsh functions, Fourier-Walsh.

¹ The results reported here are part of a Ph.D. thesis written at Purdue University under the direction of Professor R. A. Hunt.

310 K. H. MOON

(2)
$$w_0(x) = 1, \quad w_n(x) = \prod_{j=0}^{\infty} [r_j(x)]^{\epsilon_j}.$$

Let x be any real number in (0, 1). Then we have a unique representation of the form $x = \sum_{n=1}^{\infty} x_n 2^{-n}$ with infinitely many $x_n \neq 0$, where $x_n = 0$ or 1.

We define

(3)
$$x \dotplus y = \sum_{n=1}^{\infty} |x_n - y_n| 2^{-n}$$

where $x = \sum_{n=1}^{\infty} x_n 2^{-n}$, $y = \sum_{n=1}^{\infty} y_n 2^{-n}$, x_n , $y_n = 0$ or 1 and the operation '÷' is called dyadic addition (see Fine [2]).

We denote the Dirichlet kernel and the partial sum of Fourier series of f(x) with respect to the Walsh functions in the Paley enumeration by

(4)
$$D_{n}(x) = \sum_{j=0}^{n-1} w_{j}(x),$$

$$S_{n}f(x) = \sum_{j=0}^{n-1} C_{j}(f)w_{j}(x) = \int_{0}^{1} f(t)D_{n}(x + t)dt,$$

where $C_j = C_j(f) = \int_0^1 f(t) w_j(t) dt$ is the jth Fourier coefficient of f. The Lebesgue constant L_n is given by

$$L_n = \int_0^1 |D_n(t)| dt.$$

It is well known (see Fine [2]) that

(6)
$$\lim_{n \to \infty} \sup \left(\frac{L_n}{\log n} \right) \ge \alpha > 0.$$

An interval I with the length 2^{-n} is called a dyadic interval if the (n-1)th Rademacher function $r_{n-1}(t)$ is constant on I.

First of all we want to prove the following lemma, from which our main theorem follows. A part of the proof of this lemma will use a technique of E. M. Stein in [3].

Lemma. For any fixed positive integer n, there exists a set E_n such that

(i)
$$m(E_n) = 2^{-2N}$$
, where $2^{N-1} \le n < 2^N$,

(ii)
$$C_k(\chi_{E_n}) = \int_0^1 \chi_{E_n}(t) w_k(t) dt = 0$$
 if $0 < k < 2^N$ or $k \ge 2^{N+2^N}$,

(iii)
$$M\chi_{E_n}(x) = \sup_{n>1} |S_n\chi_{E_n}(x)| \ge \frac{1}{2} L_n m(E_n),$$

where m(A) and χ_A denote the Lebesgue measure and the characteristic function of the set A respectively.

Proof. Let $I_j = [(j-1)2^{-N}, j2^{-N})$ $(j=1, 2, \dots, 2^N)$. We will choose dyadic intervals d_j such that $d_j \in I_j$ and $m(d_j) = 2^{-(N+2^N)}$ for all $j=1, 2, \dots, 2^N$, and put $E_n = \bigcup_{j=1}^{2^N} d_j$.

Then we get

(7)
$$m(E_n) = \sum_{j=1}^{2^N} m(d_j) = 2^{-2^N}.$$

We note that for any k with $0 < k < 2^N$

$$m\{t \in E_n; w_k(t) = 1\} = m\{t \in E_n; w_k(t) = -1\}$$

and for any $k > 2^{N+2^N}$

$$m\{t \in d_i; w_k(t) = 1\} = m\{t \in d_i; w_k(t) = -1\}$$

for all $j = 1, 2, \dots, 2^N$. Hence, we obtain

(8)
$$C_k(\chi_{E_n}) = 0$$
 if $0 < k < 2^N$ or $k \ge 2^{N+2^N}$.

It remains to choose the dyadic intervals d_i , so that (iii) is satisfied.

We note that for $n < 2^N$, $D_n(t) = \sum_{j=0}^{n-1} w_j(t)$ is constant on I_i for each $i=1,2,\cdots,2^N$, and hence $D_n(x \dotplus t)$ is constant as x and t vary over I_i and I_j respectively. Let $D_n(I_i \dotplus I_j)$ denote the value of $D_n(x \dotplus t)$ for $x \in I_i$ and $t \in I_j$, and

(9)
$$\sigma(x) = 1 \quad \text{if } x \ge 0,$$
$$= -1 \quad \text{if } x < 0.$$

Consider the 2^N -tuples R_k $(1 \le k \le 2^N)$ such that

(10)
$$R_{k} = (\sigma(D_{n}(I_{k} + I_{1})), \, \sigma(D_{n}(I_{k} + I_{2})), \, \cdots, \, \sigma(D_{n}(I_{k} + I_{2}N))).$$

We now define the dyadic interval d_i by

$$(11)d_{j} = \left[(j-1)2^{-N} + 2^{-N} \sum_{i=1}^{2^{N}} \epsilon_{ji} 2^{-i}, (j-1)2^{-N} + 2^{-N} \sum_{i=1}^{2^{N}} \epsilon_{ji} 2^{-i} + 2^{-(N+2^{N})} \right)$$

where ϵ_{ii} $(1 \le i \le 2^N, 1 \le j \le 2^N)$ is either 0 or 1 and

$$(12) \qquad (-1)^{\epsilon_{ji}} = \sigma(D_n(I_i + I_i)).$$

Hence, for all $t \in d_i$ $(1 \le j \le 2^N)$

$$(13) \quad w_{2^{N+i-1}}(t)D_{n}(I_{i} \dotplus I_{j}) = r_{N+i-1}(t)D_{n}(I_{i} \dotplus I_{j}) = (-1)^{\epsilon_{ji}}D_{n}(I_{i} \dotplus I_{j}) \ge 0$$

for each i with $1 \le i \le 2^N$.

Now we set $E_n = \bigcup_{i=1}^{2^N} d_i$ and it remains to show that χ_{E_n} satisfies condition (iii).

For any fixed $x \in [0, 1)$, there exists a unique k such that $x \in I_k$, and we set

(14)
$$n_{kx} = n + 2^{N+k-1} \qquad (2^{N-1} \le n < 2^N, n \text{ fixed}).$$

We again note that

(15)
$$D_{n}(x + t)w_{2N+k-1}(t) \ge 0$$

for all $t \in d_j$ and $j = 1, 2, \dots, 2^N$. Since $D_n(x + t)$ is constant on each I_i $(I \le i \le 2^N)$ and $m(E_n) = 2^{-2^N}$, we obtain, by applying (15),

$$\left| S_{n_{kx}} \chi_{E_{n}}(x) - S_{2^{N+k-1}} \chi_{E_{n}}(x) \right| = \left| \int_{0}^{1} \chi_{E_{n}}(t) w_{2^{N+k-1}}(t) D_{n}(x + t) dt \right|$$

(16)
$$= \left| \sum_{j=1}^{2^N} \int_{d_j} w_{2^{N+k-1}}(t) D_n(x + t) dt \right| = \sum_{j=1}^{2^N} \int_{d_j} |D_n(x + t)| dt$$

$$=2^{-2^{N}}\sum_{i=1}^{2^{N}}\int_{I_{i}}|D_{n}(x+t)|dt=m(E_{n})\int_{0}^{1}|D_{n}(x+t)|dt=m(E_{n})\cdot L_{n}.$$

Thus, (16) implies $M\chi_{E_n}(x) \ge \frac{1}{2}L_n m(E_n)$. The lemma is proved.

Now we are ready to prove the following theorem:

Theorem. Let Φ be a function satisfying conditions (a), (b) and (c). Then there exists a function $f \in \Phi(L(0, 1))$ such that $S_n f(x)$ diverges everywhere.

Proof. If we note (6) and properties of the function Φ , we may choose a sequence $\{n_j\}_{j=1}^{\infty}$ of positive integers satisfying the following conditions:

- (a) there is a constant A > 0 such that $L_{n_i} \ge A \log n_i$,

 $(\beta) \ \ N_{j+1} \geq N_j + 2^{N_j}, \ \text{and}$ $(\gamma) \ \ \Phi(\alpha_j) \leq j^{-2}\alpha_j (\log\log\alpha_j),$ where $2^{N_j-1} \leq n_j < 2^{N_j}, \ \alpha_j = 1/(\log n_j)m(E_{n_j}), \ m(E_{n_j}) = 2^{-2^{N_j}}$ and the sets E_{n_j} are the same as in the lemma. It is easy to see that the sequence $\{\alpha_n\}_{n\geq 1}$ is a lacunary sequence and there exists a constant C such that

(17)
$$\sum_{j=1}^{n} \alpha_{j} \leq C\alpha_{n}.$$

Let f be the measurable function defined by

(18)
$$f(x) = \sum_{j=1}^{\infty} \alpha_j \chi_{E_{n_j}}(x).$$

From the properties of Φ and (17) we get

(19)
$$\Phi\left(\sum_{j=1}^{\infty} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) \leq C \sum_{j=1}^{\infty} \Phi(\alpha_{j}) \chi_{E_{n_{j}}}(x).$$

In fact, if x does not belong to $\bigcup_{j=1}^{\infty} E_{n_j}$ or x belongs to infinitely many E_{n_j} 's then both sides of (19) are equal to 0 or ∞ respectively, and if x belongs to finitely many E_{n_j} 's then

$$\Phi\left(\sum_{j=1}^{\infty} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) = \Phi\left(\sum_{j=1}^{k} \alpha_{j} \chi_{E_{n_{j}}}(x)\right) \leq \Phi\left(\sum_{j=1}^{k} \alpha_{j}\right) \chi_{E_{n_{k}}}(x)$$

$$\leq \Phi(C\alpha_k)\chi_{E_{n_k}}(x) \leq C\sum_{j=1}^{\infty} \Phi(\alpha_j)\chi_{E_{n_j}}(x)$$

where $k = \max\{j; x \in E_{n_j}\} < \infty$. Hence, we have

$$(20) \int_0^1 \Phi(f(x)) dx \le C \sum_{j=1}^\infty \Phi(\alpha_j) m(E_{n_j}) \le C \sum_{j=1}^\infty \frac{1}{j^2} \alpha_j (\log \log \alpha_j) m(E_{n_j}) < \infty.$$

This implies $f \in \Phi(L)$.

Now it remains to show that $S_n f(x)$ diverges everywhere. Let x be a fixed point in [0, 1).

For each positive integer k, (14) and (16) imply that there exists a positive integer n_{kx} such that

(21)
$$n_{kx} = n_k + 2^{N_{kx}} \quad \text{with } N_k \le N_{kx} < N_k + 2^{N_k},$$

and

(22)
$$|S_{n_k x} \chi_{E_{n_k}}(x) - S_{2^{N_k x}} \chi_{E_{n_k}}(x)| = L_{n_k} m(E_{n_k}).$$

If $j \neq k$, we obtain

(23)
$$S_{n_{kx}} \chi_{E_{n_{j}}}(x) - S_{2^{N_{kx}}} \chi_{E_{n_{j}}}(x) = \sum_{i=2^{N_{kx}}}^{n_{kx}-1} C_{i}(\chi_{E_{n_{j}}}) w_{i}(x) = 0$$

since part (ii) of the lemma implies $C_i(\chi_{E_{n_j}}) = 0$ if $2^{Nk} \le i < 2^{Nk+1}$. A combination of (22), (23), (18) and (α) gives

$$\begin{split} |S_{n_{kx}}f(x) - S_{2}N_{kx}f(x)| &= \alpha_{k}|S_{n_{kx}}\chi_{E_{n_{k}}}(x) - S_{2}N_{kx}\chi_{E_{n_{k}}}(x)| \\ &= \alpha_{k}L_{n_{k}}m(E_{n_{k}}) = L_{n_{k}}/\log n_{k} \ge A > 0. \end{split}$$

We finally get

(24)
$$\lim_{m,n\to\infty} \sup_{m} |S_{m}f(x) - S_{n}f(x)| \ge A > 0$$

for all $x \in [0, 1)$, that is, the Fourier-Walsh series of $f \in \Phi(L)$ diverges everywhere.

Remark. A theorem in E. M. Stein [3, Theorem 3] implies that if for every $f \in \Phi(L)$

(25)
$$m\left\{x \in (0, 1): \limsup_{n \to \infty} |S_n f(x)| < \infty \right\} > 0$$

then there exists an absolute constant A such that for any y > 0

(26)
$$m\left\{x \in (0, 1): \sup_{n \ge 1} |S_n f(x)| > y\right\} \le \int_0^1 \Phi\left(\frac{A}{y} |f(x)|\right) dx.$$

We may apply this theorem to prove the existence of a function in the class $\Phi(L)$ whose Fourier-Walsh series diverges almost everywhere.

In fact, let $f(x) = \chi_{E_n}(x)$ and $y_n = \frac{1}{2}L_n m(E_n)$, where the set E_n is defined in the lemma. Then part (iii) of the Lemma implies

$$m\{x \in (0, 1): M\chi_{E_n}(x) > y_n\} = 1$$

for all positive integers n, but for ϵ , $0 < \epsilon < 1$,

$$\int_0^1 \Phi\left(\frac{A\chi_{E_n}(x)}{y_n}\right) dx \le \epsilon < 1$$

for all sufficiently large n where the constant A is as same as in the inequality (26).

Thus, our theorem for the almost everywhere divergence follows.

REFERENCES

- 1. Y. M. Chen, An almost everywhere divergent Fourier series of the class $L(\log^{+}\log^{+}L)^{1-\epsilon}$, J. London Math. Soc. 44 (1969), 643-654. MR 39 #1886; erratum, 40, p. 1705.
- 2. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 11, 352.
- 3. E. M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 23 #A2695.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA $47907\,$

Current address: ITT/Federal Electric Corporation, P. O. Box 1886, Vandenberg Air Force Base, California 93437