
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 50, July 1975

SOME FIXED POINT THEOREMS FOR CONDENSING

MULTIFONCTIONS IN LOCALLY CONVEX SPACES

C. H. SU AND V. M. SEHGAL

ABSTRACT.    Let  G   be a nonempty subset of a locally convex space

E   such that  cl(C)  is convex and quasi-complete, and /: cl(G)—► E   a

continuous condensing multifunction.   In this paper, several fixed point

theorems are established if / satisfies some conditions on the boundary

of G.  The results herein extend some theorems of Reich [9] and gener-

alize some of the well-known fixed point theorems.

The classical Tychonoff's fixed point theorem [l0] has been extended

to multifunctions by Browder [3l, Fan [4], Glicksberg [5], Himmelberg [7]

and several others.  In a recent paper [9j, Reich has proved some interesting

fixed point theorems for condensing multifunctions and has given extensions

of some of the results contained in [3] and [4.1.  In this paper, we prove sev-

eral fixed point theorems for condensing multifunctions in a locally convex

space.   The main result of this paper (Theorem 2) is motivated by Reich [9]

and extends a result in [9l.  The results herein also generalize some well-

known results (see [2], [8]).

1.  Let X and   Y be topological spaces.   A multifunction  /: X —» Y is a

point to set function such that for each  x £ X, f(x)  is a nonempty subset of

V.  The multifunction /: X —> Y  is (a) upper semicontinuous (u. s. c.) iff for

each closed subset B  of  V, the set /"   (ß) = i*: /(*) n B 4 0\ is a closed

subset of X, (b) lower semicontinuous (l.s.c.)iff for each open subset  U C Y,

the set /~   (U)  is an open subset of X, (c) continuous iff it is both u.s.c.

and  l.s.c, (d) point-compact (closed, convex) iff for each  * £ X, /(*)  is a

compact (closed, convex) subset of  Y.

It follows immediately from the above that a multifunction  f: X —» V is

u.s.c. iff for each  * £ X  and open   U C Y with  /(*) Ç U, there is an open

VCX such that * £ V and f(v) = \J{f(z): z £ V\ C U.  It is l.s.c. iff for

each open set   U C Y and each  * £ X with  /(*) Ci ¡J 4 0, there exists an
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open set  V C X  such that * £ V  and f(z) Cî U 4 0 for each  z £ V.

Proposition 1.   Let f: X —> Y be a  u.s.c, point-compact multifunction

and i*a: a e F\  a net in  X such that *a —> *Q.   // ya £ j(xa) for each

a £ F1, /¿en /¿ere is a yQ £ f(xQ)  and a subnet \y n\ of the net \ya: a. £ T\

such that y g —» yn.

Proof.  Suppose that no subnet of the net iy a: a £ Pi  converges to a

point in /(*0).  Then for each y £ f(xQ), there is an open neighborhood  U (y)

of y  such that ya 4 UAy) eventually. Since /(*n)  is compact, there is a

finite subset iy¿: i = 1, 2, ..., «i Ç f(xQ) such that

(1) f(x0)ç\J\U(y.):   i=l,2,...,n\=U

and ya t U eventually.  Now, / being u.s.c, it follows from (1) that there

is open neighborhood  V of *Q  such that f(V) C U. However, this implies

that f(xa)C U eventually and hence,   ya £ U eventually, a contradiction.

2.  Throughout this section let  E  denote a locally convex separated

topological vector space and il  a base of absolutely convex neighborhoods

of the origin  6.  A subset  X of E is totally bounded iff for each   U ell, there

exists a finite subset B C X such tiiat X C B + U.  For any subset  A  of  E,

let

2(A) = \U £ II:  A C B + U fot some totally bounded subset  B of  Fi.

Let  S C E.  A multifunction  f: S —* E is condensing iff Q(A) C¿ Q (/(A))  for

each bounded but not totally bounded subset ACS (see Himmelberg, Porter,

Van Vleck [6]).

For a subset S C E, let dS  denote the boundary of S  in  E, co (S) the

convex hull of S.  A closed subset  B  of E  is quasi-complete if its closed

bounded subsets are complete.  It is clear that if X is a totally bounded sub-

set of a quasi-complete subset B  then  cl(X)  is compact.

The following lemma is similar to Theorem 1 in [6] and the proof there-

in works verbatim with the hypothesis of this lemma.

Lemma 1.   Let X  be a quasi-complete convex subset of E  and f: X—>X

be an u.s.c, point-compact, point-convex, condensing multifunction.   If f(X)

is bounded, then f has a fixed point in X, that is, there is an xQ £ X such

that *0 e f(x0)-

Theorem 1.   Let X  be a convex, quasi-complete subset of E, and f:

X —* E  an u.s.c, point-compact, point-convex, condensing multifunction.

If f(X)  is bounded and f(x) C\ X 40   for each x £ X, z^êtz  / has a fixed

point in X.
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Proof.  Let  F (x) = /(*) O X.   Then   F  satisfies the conditions of Lemma

1, and hence there is an *_  £ X  such that xQ £ F(xA C f(xQ).

The following consequences of Theorem 1 are immediate.

Corollary 1.   Let X  be a convex, quasi-complete subset of E  and f:

X —>E  be an u.s.c, point-compact, point-convex, condensing multifunction.

If there exists a bounded subset  K of X such that f(x) D K 4 0  for all

x £ X, then f has a fixed point in X.

Corollary 2.   Let X be a convex, quasi-complete subset of E  and K a

totally bounded subset of X.   If f: X —► E  is an u.s.c., point-closed, point-

convex multifunction such that f(x) n K 40   for all x £ X, then f has a

fixed point in X.

Since for any subset G CE, d(cl(G)) C 3(G), the following result ex-

tends a recent result of Reich [9, Theorem 3-5].

Theorem 2.   Let G  be a nonempty open subset of E  such that  c1(G)  is

convex and quasi-complete.   If f: c1(G) —> E  is a continuous, point-compact,

point-convex, condensing multifunction satisfying the conditions (a) /(G)  is

bounded, (b) there is a w £G such that for all y £ 3(cl(G))  and z £ f(y),

z - w = 772(y - w)  implies  m / 1, then f has a fixed point in cl (G).

Proof.   Let  p be the Minkowski functional of the set  cl (G) - w.  Define

a mapping  q: cl (G) —> (0,  l]  by

(3) q(x) = [max {1, mini p(y - w):  y£f(x)\\]~1.

Note that since /(*) is compact and p  is continuous, the minimum in (3)

exists at some element of /(*).  Define a multifunction  g: c1(G) —» E  by

(4) g(x) = q(x)f(x) + (1 - q(x))w.

Note that for each * £ c1(G), there is a y £ f(x) such that p(y - w) =

min{p (z - w): z £ f(x)\  and hence z = q(x)y + (l - q(x))w £ g (x). Moreover,

for this y, it follows from (3) that p(z - w) = q(x)p(y - w) < 1.   Therefore

z £ cI(G)  and hence  cl (G) O g (*) 4 0 for any'* £ c1(G).  We show that g

satisfies the conditions of Theorem 1.  It is clear from (A) that g (*)  is

compact and convex for each *.   Further, since g(cl(G)) C co(/(cl(G)) U \w\),

it follows by hypothesis (a) that g(cl(G))  is bounded.  Now, for any bounded

but not totally bounded subset A,

(5) Q(g(A)) D 2(co (f(A) u M)) = Q(f(A))^Q(A).

It follows from (5) that g  is condensing.  We show that g is u.s.c.   Let  B
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be a closed subset of  E and let A = g~   (ß).  We show that  A  is closed.

Let  *0 eel (A) and let a net   i*a: a e TS in  A  be convergent to  xQ.  For

each   a e I~, choose  ya £ f (xa) and a y0 £ f(xQ) such that  p(ya - w) =

min ip (y - w): y £ f(xa)\ and p (y0 - w) = min !p (y - izz): y e /(*Q)S.   It

follows by Proposition 1 that there is a subnet  iy«: j6 e Tji of the net

iya: a e Ti converging to a  y £ f(xA. Now, since  p is continuous, for any

t > 0, there is  ß1 £ Y {   such that for all  ß > ß1

(6) p(yQ - w) < p(y - w) < p(yß - w) + t.

Let  U = \z £ E: p(z - w) < p(y0 - w) + t\.    Then  U is open and y0 e

(7 Cl f(xQ). Now, / being  l.s.c, there is a neighborhood  V  of *Q   such that

7(2)0 U 4 0  tot each 2 e V   and hence there is  a ß2eVl  such that

/U^) O U 40  fot all  ß> ß2.  This implies that for  ß> ß2

(7) p(yß-w) <p(yQ-w) + t.

It follows now from (6) and (7) that for all  ß > maxi/ôj, /32i,

(8) p(yQ - w) < p(y - w) < p(yß - w) + f < p(yQ - w) + 2f.

Since  f > 0 is arbitrary, we have from (8) that  p (y0 - w) = p (y — w) and

q (x ß)—> q (x 0).  Since for any  ß £ Tj, g (x^) O ß 40, there is  z ß £ f (x ß)

such that

(9) q(xß)zß+ (l - q(xß))w£ B.

By Proposition 1, there is a subnet  izgi of the net  \z A and a zQ £ f (x A

such that Zg —» 2Q.  Since  <?(*g) —» q(xQ), therefore, from (9) it follows that

g(xQ) O B 4 0, that is  *0 e A.  Thus, g  is an  u.s.c.  multifunction, and sat-

isfies the conditions of Theorem 1, and hence there is  zz £ cl (G) with  u £

g(u).  We assert that  00= min \p (y - w): y £ f (u)] < 1.  Suppose   a> 1.  Let

u = q(u)yl + (l - q(u))w £ g (u) for some yy  £ f (u).  By our assumption

p(y^-w)y 1, and hence by the definition of q, it follows that p(u - w) =

q(u) p(y j - w) > 1. Since  u £ c1(G), the last inequality implies that u €

rKcl(G)).   Also  y j - w = [q(u)]~ 1 (u - w), [q(u)]~ 1 >  1.   This contradicts

hypothesis (b).   Thus   cl< 1   and hence  q(u) = 1.   This implies that u £

g(u) = f(u).  This establishes the proof of Theorem 2.

Corollary 3.   Let  G  be a nonempty open subset of E such that  cI(G)

is convex and quasi-complete.   Suppose  f: c1(G) —► E  is a continuous, point-

compact, point-convex, condensing multifunction such that (i) /(G) is bounded, and

(ii) /(x)Ccl(G) for all x e ¿Hcl(G)).   Then f has a fixed point in  cl (G).
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Theorem 3.   Let G  be a nonempty open subset of E  with cl(G)   convex.

Let f: cl (G) —> E  be a continuous, point-closed, point-convex multifunction

satisfying the conditions (i)  cl(/(G))  is compact, and (ii) there is a w £ G

such that for each y £ 3(cl (G)) and z £ f(y), z - w = m(y - w)  implies m 4 1,

then f has a fixed point in c1(G).

Proof.   Define the functions q  and g  as in Theorem 2.  Then g  is u.s.c.

and g (x) O cl (G) 4 0 tot any  * £ cl (G).  Since

(10) g(cl(G))ç[0, l]cl(/(G))+[0, l]w

and the right side of (10) is compact, therefore  cl (g (cl (G))) is compact.  De-

fine a multifunction  h: cl (G) —» cl (G) by  h (x) = g(x) O cl (G).  Then  h is

u.s.c.   and  h(cl(G))C g(cl(G)).   Thus, by Himmelberg's theorem [7, Theorem

2], there is a zz e cl (G) such that  u £ h(u).   It can now be shown, as in Theo-

rem 2, that u £ h(u) C g (u) = /(zz).

The following consequence of Theorem 3 is an extension of a recent

result of Porter [8] and generalizes a result of Singball [2].

Corollary 4.   Let G  be a nonempty open subset of E such that  c1(G)  is

convex.   If f: cl (G) —* E  is a continuous, point-closed and point-convex multi

function such that cl(/(G))  is compact and f(d(cl(G))) C G, then f has a

fixed point in  cl (G).
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