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A MEAN VALUE FORMULA FOR THE SPIN GROUP

LAWRENCE VERNER!

ABSTRACT. An adelic mean value formula is proved for two-connected
algebraic homogeneous spaces, generalizing Siegel’s formula in the geome-
try of numbers. The case of the spin group acting on the generalized sphere
furnishes an example. The procedure consists in applying Galois cohomolo-
gical techniques to the method of Ono.

Let ¢ be a quadratic form on C”?, and let X = {x € C": ¢(x) = 1}. The
group SO(q) = {g € SL(n, C): g(gx) = g(x)} acts transitively on X. Applying

““mean

Witt’s theorem to the homogeneous space (§0(g), X), Ono proved a
value formula’ which is analogous to Siegel’s mean value theorem [4]. Our
intention is to prove the mean value formula for certain other spaces.

The action of SO(g) on X can be lifted to Spin(g), the universal cover-
ing group of SO(g), as follows. Let p: Spin(g) — SO(gq) be the covering map.
For g €Spin(g), x € X, set g*x= p(g)x. Then Spin(g) acts transitively on
X but does not satisfy the Witt condition unless ¢ has maximal Witt index.

In general we consider an algebraic group G acting transitively on a variety
X. Ono has shown that the mean value theorem holds for (G, X) if certain
topological conditions are satisfied [3]. A variation of Ono’s methods will
enable us to prove a theorem which contains the mean value formula for the

spin group as a special case.

1. Statement of the Theorem. Let G be a connected linear algebraic
group defined over a field k. Let X be an algebraic variety defined over &
upon which G acts k-rationally. The pair (G, X) is a homogeneous space

defined over k if the action is transitive and Xk £ .

Theorem. Let (G, X) be a homogeneous space defined over an algebraic

number field k. Suppose X is 2-connected as a complex manifold and G is
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l-connected as a complex Lie group. Then, for every continuous function f

on the adele space X, with compact support,

fGA/Gk Z f(gx) dg = fx f(x) dx.

A
eXk

In particular, both sides of the formula are meaningful and finite.

If n> 3, the group Spin(g) is l-connected, and if n > 4, the ‘‘sphere’’
X is 2-connected (see [3, Exercise II, p. 279]). If » > 5, then by Hasse’s
theorem g(x) = 1 has a rational solution and so (Spin(g), X) is a homoge-
neous space defined over () satisfying the conditions of the Theorem.

Our proof of the Theorem requires the conjectures of Weil and Kneser on
1-connected groups, although for the spin group these conjectures are known

results.

2. Canonical measures. If G is an algebraic group with a finite funda-
mental group, then there is a canonical Haar measure dg of the adele group
G 4, and the measure of the quotient space 7(G) = [G /G, 48 is finite (see

[5]). Canonical measures can also be defined on suitable homogeneous spaces.

Lemma 1. If (G, X) satisfies the conditions of the Theorem, then the
isotropy subgroup G, = {g € G: gx = x}, is l-connected for each x € X.

Proof. Fix x € X. The map G — X, given by g — gx, gives rise to

an exact sequence.

(E) 0—G, —G—=X—0.

This in turn induces a finite covering
0—G/(G)y—6G/N(G)y— X —0,

where (Gx)o denotes the connected component of the identity in G,. Since
X is simply-connected, the covering must be trivial; hence, Gx/(Gx)0 =0,
i.e., G, is connected.

By the homotopy exact sequence associated with (E) we have ﬂz(X) —
7,(G,) — 7,(G). Our hypotheses imply that 0 = 7,(X) = 7,(G), and so G

is simply-connected.

Proposition. If (G, X) is a homogeneous space defined over k, satisfy-

ing the conditions of the Theorem, then

(a) X, is discrete in X4
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(b) there is a canonical measure dx on X 43

(c) dx is GA-invarianz.

t

Proof. Lemma 1 shows that (G, X) is a ‘special homogeneous space’’
in the language of [3]. Theorem 4.1 of [3] therefore applies.

Weil’s conjecture states that if G is a l-connected algebraic group,
then 7(G) = 1. Consequently our Theorem gives a formula for the mean value

of the function g > Zyex, f(gx).

3. Galois cohomology. Let (G, X) be a homogeneous space defined
over a field k. Although G acts transitively on X, G, need not act transi-
tively on Xy Instead, we have, for each & €X,, an exact sequence of

Galois cohomology sets:

K

¢ 8 A
0—G, , —£G, —ks x, —Es 1k, G,) =2~ 1k, G).

Two elements in X, have the same image in H(k, Gé:) if and only if they
are in the same G, -orbit. The main properties of Galois cohomology can be
found in [1].

Let G be an algebraic group defined over an algebraic number field k.

The completions k& — &, induce a map
a: H'(k, G) — OHY (K, G),

the product being taken over all places of k. Kneser has conjectured that
a is bijective if G is l-connected [2]. This is known to hold for all groups
without an Eg-factor. In what follows we assume the validity of Kneser's

conjecture.
Lemma 2. Let (G, X) satisfy the conditions of the Theorem. Then,
GaX, = X4

Proof. Let x € X4 and consider the commutative diagram:

5
X, — kL TIH Uk, Gf)i.» [H Uk, G)

ns
X, — OH' G, G) =2 Ik, G).

v

We view x €I1X . Let (cv) = H8v(x). Lemma 1 shows that G, is l-con-

nected and so by Kneser’s conjecture @ is surjective and we can lift (cv)
to c € Hl(k, Gf). Now
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Bo Ak(c) = HAU oalc) = HAU(CU) = Y]AU o [lb‘v(x) = 0.
By Kneser’s conjecture, 3 is injective and, hence, Ak(c) = 0. By exactness

we can write ¢ = Bk(n), for some 1 € X,. Then
15 o i) =aed (n=ale)=(c)=15 (x);

i.e., for each place v, 0 () = 3, (x), and so x and 7 are in the same orbit
under G,. For each v select gl'/ € Gg,, such that g;n = x. For almost all
places v, the group of v-integral points, Gg , acts transitively on Xo , (see
[1, p. 161]). Let S be the set of places where this transitivity fails. For
each v ¢ S choose h, €Gp,, such that b n=x. Now set

1

8, if ves,
87 it ds.
Then g = (gv) €G,, and x = gn € G4 X, as desired.

Lemma 3. If (G, X) satisfies the conditions of the Theorem, then the
map J: G\X, — G,\X 4, given by J(G &) = G,& is bijective.

Proof. Take G, x € GA\XA. By Lemma 2 we can write x = g7, with
8€G,4, n€X,. Then G x=G,n= ](Gkn), so | is surjective. To see

that | is injective consider the commutative diagram

K 8 1
G, X, > H'(k, Gf)
1 ﬂKU nsv I l(k )
Gku — I]Xku - [1H iy Gf .

G =G  (§neX) =neG,d
= jx(n) € Im(llk ) = Ker(115))
= aod,(n=0
= 5k(’7) =0 (Kneser’s conjecture)
=7ne€lnlk)=G6E =G, &= Gn.

4. Proof of the Theorem. Let (G, X) be a homogeneous space defined

over k, satisfying the conditions of the Theorem. Let f be a continuous
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function on X, with compact support. For each £ € X, let dué be the ca-
nonical Haar measure on Gf A

Lemma 4 [3, Lemma 5.1). Each orbit GAf is open in X 4.
Lemma 4 shows that the measure dx on X 4 restricts to a measure on

Gy

As an application of Fubini's theorem we have (see [5, Lemma 2.4.2])
fgx)dg = f(x) dx - du, = ) dx,
fGA/ka};‘kg IGAS‘ fc ¢ ch.f

by Weil’s conjecture applied to G ..

£47%¢2

Let D be a fundamental domain for Gk in Xk’ Lemma 3 shows that D

is also a fundamental domain for G, in X,. Hence,

fGA/G 2 f(gx)d‘ézch/ck > X flendg

kx€Xk §eD xeG&

2 > flex)dg
£eD fGA/Gk xeGk?f

= gezn fGAf /(x) dx = fXA f(x) dx = fXA f(x) dx.
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