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CONFUSION IN THE GARDEN OF EDEN

SVEN SKYUM

ABSTRACT. In this paper we examine the connection between unambi-

guity of cellular systems and the existence of Garden of Eden configura-

tions in cellular automata.  The examination includes both finite and infi-

nite configurations.  The connections are found by examining various prop-

erties of the global transition function.

Introduction.   In 1962 Moore L5 J showed that the existence of mutually

erasable configurations in a two dimensional automata implies the existence

of Garden of Eden configurations.   In 1963 Myhill [6] showed that the exis-

tence of mutually indistinguishable configurations is necessary for the exis-

tence of Garden of Eden configurations.  Amoroso and Cooper [l] have shown

that Myhill's theorem does not apply to finite configurations but claim, with-

out proof, that both Moore's  and Myhill's theorems apply to infinite configu-

rations.  Arbib has redefined the concept of Garden of Eden in [2] and has

shown that the existence of mutually indistinguishable configurations is both

necessary and sufficient for the existence of Garden of Eden configurations.

This theorem is not true.

The confusion in the field may be due to different definitions and con-

cepts and prompts the systematic examination of the relation between differ-

ent characteristics of the global transition function given in this paper.

Definitions and notations. A cellular automaton A is a system

('*> g, Q, q0, A) where

/"   is the underlying space and  a = (a., a2, • • • , a  ) is a cell.

g : /" —• (ln)m is the neighbourhood function defined by g(a) =

(a + 8,, a+ 8~, • • • , a + 8   ) where <5. (z = 1   2, • • • , ttz) e /"  is fixed.
L Z 222 2

Q  is a finite set of states.

q q £ Q  is a special state called the quiescent state.

o~: Qm —' Q  is the local transition function, subject to the restriction

o(q™) = a„.  This restriction assures us that no infinite configuration is suc-

cessor for a finite configuration.
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A configuration in A   is a mapping c : I" —• Q.   Let C  be the set of all

configurations in A.   A finite configuration in A   is a configuration c,  where

the support is finite where  supp(c) = \a £ /"|c(a) 4 qQ\. Let   C,    be the set

of all finite configurations in A.

The neighbourhood state function  h:   (_ x /" —' Qm  is defined by:

Vc eC, Va e /" : h(c, a) = (c(a+ 8A, c(a+ 8A, ■ • • , c(a+ 8  )).
12 m

The global transition function r: C     ' C  is defined by: Vc £ C, Va £ I":

r(c)(a) = o(h(c, a)).   Let   r, = r L   be the restriction of r to C, (r. : C.-'(2,)-
/ 'Cj Jill

c  is a subconfieuration oí c(c<c).iff c\        ,\. = c\ ,»..
'   ° ! supple) 'supp(c)

The elements of  G = C,\r.(C.) = (_.\r (C.) are called Garden of Eden

configurations.   This is 720/ equivalent to the original definition of Moore,

c eC. is strong Garden of Eden1 iff 35 C f™3:

(1) 5 finite,

(2) supp ic) C S,

(3) Vc £<2/: c* £G where

Sc(a),       a e S,

c(a),       a 4 S.

Let  G    be the set of all strong Garden of Eden configurations.  G    = 0 iff

there are no Garden of Eden configurations of the type defined by Moore.

Arbib defines a configuration c  as Garden of Eden when it satisfies:   Vc e

C,: c < c => c £ G.

The set  G  ,  which is the set of configurations satisfying Arbib's defi-

nition, is included in G.

The global transition function on finite and infinite configurations.   The

close connection between properties of configurations and those of the global

transition function is shown by the following facts.

(1) T. surjective <=> there are no Garden of Eden configurations  (G =0).

(2) r, injective <=> there are no mutually erasable configurations (see [5])

<=> there are no mutually indistinguishable configurations  (see [6]).

In the papers of Moore and Myhill, the proofs depended on the following

inequality which was proved for the case  tz = 2  and p = 2.   To generalize

their proofs to more dimensions and arbitrary finite neighbourhoods, we now

give a general proof of the inequality:

Lemma.  VA > 1, Vr > 1, V« > 1, Vp > 1, 3k > 0:   (Ar" - l)k" < Aikr-^n.

1 A strong GOE configuration is equivalent to a GOzS-restriction with respect to

C , in the notation of Amoroso, Cooper and Patt.
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Proof.   If kr y p, 1 < i < n,  then

which means that

Let

-(t',"",'f-([;/2i)-"<,ç,<-iy'(°)a',""''pi

U kr y p we then have

-JU""1 = -Ur)"-1 . p . «f    "     )  < ¿ (-1)'("W,,*V = (kr - p)" - (*r)".
\[n/2]/       ¿_i ^z/

Choose  zé > max(p/V, K/logA (Ar /(Ar   - l))).  Then we have

logA ((Ar" - 1)/Ar") < -K/k <=* A*n -K Ar"-K/k

-(A'" - l)k" < AC*')"-"*—1 < ¿Ur-p)» .    n

Theorem 1.   G^. = 0 <=» r. injective.

The proof is equivalent to the proofs in [5] and [6].

Theorem 2.  C. C r(C) => r. injective.

Proof.   Moore's argument from 1962.

Theorem 3.  r, injective => G   = 0.

Proof.   Myhill's argument from 1963-

Theorem 4.  C.\r(c) =0 «=> r, injective.

Theorem 5.  r injective =» r   surjective.

The proofs of Theorems 4 and 5 can be found in [7J.

Since  r, surjective =» C, C r(C) and r injective =» r, injective, closur-

ing gives the following diagram:

,e,cr(©. r injective
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We now give 2 examples which demonstrate that several of the remaining

implications are not true.

Example 1.

!/, git) = (i, i + i), lo, lî, 0, {00 — 0, 01 — 1, 10 — 1, 11 — 0}}.

Let Lie) = min.|z'|c(z) = 1\ and R(c) = max.¡z|c(¿) = l!. Xa (wr>ere A C l) is

the characteristic function defined by

1     if   z eA,

XA(¿) =
0    if i 4 A.

r is not injective because v. is the successor of both X¡ and itself.

On the other hand r. is injective because the following procedure uniquely

determines the finite predecessor of  c £ C    if it exists:

(1) Hi) = 0 for i y Rie);

(2) tot i : = R(c) down to  L(c):  c(i) = if c(i + l) = 1   then  1 - c(i) else

cii);

(3) Hi) = 0 for i < L(c) + 1.

If we in Step 2 replace  L(c) with -oo and drop 3, we have a procedure

for determination of an infinite predecessor.  E.g. C. C r((l).  However r. is

not surjective  because  ^i  i = r Ac) => L(c) = ;' + 1 A R(c) = / which is absurd.

Furthermore,  Gq =0   because Va, b : rf(X{2 .| ie[atb]\) = X[2a-l ,2b]'

Example 2.

{/, git) = (i, i + D, {0, IS, 0, |00 — 0, 01 -   1, 10   -» 1, 11 — ill.

C. <f r(C) because  Xi •! = Ttic) =* cij) = 1 =* XJ  \ij - l) = ^  which is absurd.

G   =0 because a <b: TAx\a i,]) = X[a-i b]' Fina^Y Ti is not injective be-

cause    ^/Xj1>3S) = r/(X|li2,3S) = X|o,l,2,3}-

We have the following diagram:

Ç-.Ct(&-1—► r injective

v     y \
G*=0

r. surjective -—l—r . injective

From this it appears among other things that the definition of Garden of Eden

appearing in this paper (and in many others) is too weak for the Garden of

Eden theorem to have a converse, and Arbib's definition is too strong for the

theorem to be true.

Open problem.  Is it true that r, surjective =» r injective?



336 SVEN SKYUM

BIBLIOGRAPHY

1. S. Amoroso and G. Cooper,   The Garden-of-Eden theorem for finite configura-

tions , Proc. Amer. Math. Soc. 26 (1970), 158-164.     MR 43 #1760.
2. M. A. Arbib,  Theories of abstract automata, Prentice-Hall, Englewood Cliffs,

N. J., 1969.
3. A. W. Burks (editor), Essays on cellular automata, Univ. of Illinois Press,

Urbana, 111., 1970.     MR 45 #8457.
4. E. F. Codd, Cellular automata, ACM Monograph Series, Academic Press, New

York, 1968.

5-  E. F. Moore, Machine models of self-reproduction, Proc. Sympos. Appl. Math.,

vol. 14, Amer. Math. Soc, Providence, R. I., 1962.

6. J. Myhill,  The converse of Moore's Garden-of-Eden theorem, Proc. Amer. Math.

Soc. 14 (1963), 685-686.    MR 27 #5698.
7. D. Richardson,   Tessellations ivith local transformations, J. Comput. System

Sei. 6(1972), 373-388.

DEPARTMENT OF COMPUTER SCIENCE, INSTITUTE OF MATHEMATICS, UNIVERSITY

OF AARHUS, NY MUNKEGADE-8000 AARHUS C, DENMARK


